Skip to main content
Log in

Effects of GaAs Surface Treatment Processes on Photocurrent Properties of Cs/p-GaAs (001) Fabricated Using a MOCVD–NEA Multichamber System

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of surface treatment processes of p-GaAs (001) on the photocurrent properties of Cs/p-GaAs (001) obtained during Cs evaporation have been investigated using a metal–organic chemical vapor deposition (MOCVD)–negative electron affinity (NEA) multichamber system comprising an MOCVD chamber, load–lock chamber, and NEA surface-activation chamber. Samples were transferred from the MOCVD chamber to the NEA surface-activation chamber without air exposure. Moreover, the air exposure time before Cs evaporation was controlled by opening the load–lock chamber. Almost the same peak photocurrents were observed for samples fabricated using only tertiarybutylarsine or H2 supply after thermal cleaning of the p-GaAs substrate. However, tertiarybutylphosphine supply after thermal cleaning of the p-GaAs substrate degraded its surface morphology and decreased its peak photocurrent. The peak photocurrent decreased monotonically with lengthening air exposure time. Moreover, the start time of the rise in photocurrent was delayed monotonically with lengthening air exposure time. These experimental results reveal that the surface treatment process of p-GaAs (001) applied before Cs evaporation is an important factor controlling the photocurrent properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Siggins, C. Sinclair, C. Bohn, D. Bullard, D. Douglas, A. Grippo, J. Gubeli, G.A. Krafft, and B. Yunn, Nucl. Instrum. Methods Phys. Res. Sect. A 475, 549 (2001).

    Article  Google Scholar 

  2. C.K. Sinclair, Nucl. Instrum. Methods Phys. Res. Sect. A 557, 69 (2006).

    Article  Google Scholar 

  3. M. Suzuki, M. Hashimoto, T. Yasue, T. Koshikawa, Y. Nakagawa, T. Konomi, A. Mano, N. Yamamoto, M. Kuwahara, M. Yamamoto, S. Okumi, T. Nakanishi, X.G. Jin, T. Ujihara, Y. Takeda, T. Kohashi, T. Ohshima, T. Saka, T. Kato, and H. Horinaka, Appl. Phys. Express 3, 026601 (2010).

    Article  Google Scholar 

  4. M. Kuwahara, S. Kusunoki, X.G. Jin, T. Nakanishi, Y. Takeda, K. Saitoh, T. Ujihara, H. Asano, and N. Tanaka, Appl. Phys. Lett. 101, 033102 (2012).

    Article  Google Scholar 

  5. Y. Honda, S. Matsuba, X.G. Jin, T. Miyajima, M. Yamamoto, T. Uchiyama, M. Kuwahara, and Y. Takeda, Jpn. J. Appl. Phys. 52, 086401 (2013).

    Article  Google Scholar 

  6. B.M. Dunham and L.S. Cardman, PAC 95/IUPAP 2 (1996), p. 1030

  7. X.G. Jin, M. Yamamoto, T. Miyajima, Y. Honda, T. Uchiyama, M. Tabuchi, and Y. Takeda, J. Appl. Phys. 116, 064501 (2014).

    Article  Google Scholar 

  8. D.T. Pierce, R.J. Celotta, G.-C. Wang, W.N. Unertl, A. Galejs, C.E. Kuyatt, and S.R. Mielczarek, Rev. Sci. Instrum. 51, 478 (1980).

    Article  Google Scholar 

  9. T. Nakanishi, H. Aoyagi, H. Horinaka, Y. Kamiya, T. Kato, S. Nakamura, T. Saka, and M. Tsubata, Phys. Lett. A 158, 345 (1991).

    Article  Google Scholar 

  10. T. Nishitani, M. Tabuchi, Y. Takeda, Y. Suzuki, K. Motoki, and T. Meguro, Jpn. J. Appl. Phys. 48, 06FF02 (2009).

    Article  Google Scholar 

  11. X.G. Jin, B. Ozdol, M. Yamamoto, A. Mano, N. Yamamoto, and Y. Takeda, Appl. Phys. Lett. 105, 203509 (2014).

    Article  Google Scholar 

  12. K. Aulenbacher, J. Schuler, and D.V. Harrach, J. Appl. Phys. 92, 7536 (2002).

    Article  Google Scholar 

  13. T. Nishitani, T. Maekawa, M. Tabuchi, T. Meguro, Y. Honda, and H. Amano, in Proceedings of SPIE 9363, 93630T (2015), p. 1

  14. L.I. Antonova and V.P. Denissov, Appl. Surf. Sci. 111, 237 (1997).

    Article  Google Scholar 

  15. S. Uchiyama, Y. Takagi, M. Niigaki, H. Kan, and H. Kondoh, Appl. Phys. Lett. 86, 103511 (2005).

    Article  Google Scholar 

  16. D.A. Orlov, C. Krantz, A. Wolf, A.S. Jaroshevich, S.N. Kosolobov, H.E. Scheibler, and A.S. Terekhov, J. Appl. Phys. 106, 54907 (2009).

    Article  Google Scholar 

  17. J.J. Scheer and J. van Laar, Solid State Commun. 3, 189 (1965).

    Article  Google Scholar 

  18. A.A. Turnbull and G.B. Evans, Br. J. Appl. Phys. 1, 155 (1968).

    Google Scholar 

  19. K. Hayase, T. Nishitani, and T. Meguro, IEEJ Trans. Electron. Inf. Syst. 132, 1261 (2012).

    Google Scholar 

  20. K.A. Elamrawi, M.A. Hafez, and H.E. Elsayed-Ali, J. Appl. Phys. 84, 4568 (1998).

    Article  Google Scholar 

  21. B.F. Williams, Appl. Phys. Lett. 14, 273 (1969).

    Article  Google Scholar 

  22. X.G. Jin, Y. Takeda, and S. Fuchi, Jpn. J. Appl. Phys. 56, 036701 (2017).

    Article  Google Scholar 

  23. T. Wada, T. Nitta, T. Nomura, M. Miyao, and M. Hagino, Jpn. J. Appl. Phys. 29, 2087 (1990).

    Article  Google Scholar 

  24. J. Grames, P. Adderley, J. Brittian, D. Charles, J. Clark, J. Hansknecht, M. Poelker, M. Stutzman, and K. Surles-Law, in Proceedings of 2005 Particle Accelerator Conference (2005), p. 2875

  25. N. Chanlek, J.D. Herbert, R.M. Jones, L.B. Jones, K.J. Middleman, and B.L. Militsyn, J. Phys. D 47, 055110 (2014).

    Article  Google Scholar 

  26. Y. Inagaki, K. Hayase, R. Chiba, H. Iijima, and T. Meguro, IEICE Trans. Electron. E99, 371 (2016).

    Article  Google Scholar 

  27. M.G. Burt and V. Heine, J. Phys. C: Solid State Phys. 11, 961 (1978).

    Article  Google Scholar 

  28. A.H. Sommer, H.H. Whitaker, and B.F. Williams, J. Appl. Phys. 17, 273 (1970).

    Google Scholar 

  29. D.G. Fisher, R.E. Enstrom, J.S. Escher, and B.F. Williams, J. Appl. Phys. 43, 3815 (1972).

    Article  Google Scholar 

  30. C.Y. Su, W.E. Spicer, and I. Lindau, J. Appl. Phys. 54, 1413 (1983).

    Article  Google Scholar 

  31. M. Hirao, D. Yamanaka, T. Yazaki, J. Osako, H. Iijima, T. Shiokawa, H. Akimoto, and T. Meguro, IEICE Trans. Electron. E99, 376 (2016).

    Article  Google Scholar 

  32. K. Hayase, T. Nishitani, K. Suzuki, H. Imai, J. Hasegawa, D. Namba, and T. Meguro, Jpn. J. Appl. Phys. 52, 06GG05 (2013).

    Article  Google Scholar 

  33. K. Tsubota, M. Tabuchi, T. Nishitani, A. Era, and Y. Takeda, J. Phys. Conf. Ser. 430, 012079 (2013).

    Article  Google Scholar 

  34. A. Era, M. Tabuchi, T. Nishitani, and Y. Takedaa, J. Phys. Conf. Ser. 298, 012012 (2011).

    Article  Google Scholar 

  35. S. Fuchi, S. Miyake, S. Kawamura, W.S. Lee, T. Ujihara, and Y. Takeda, J. Cryst. Growth 310, 2239 (2008).

    Article  Google Scholar 

  36. T. Nishitani, M. Tabuchi, H. Amano, T. Maekawa, M. Kuwahara, and T. Meguro, J. Vac. Sci. Technol. B 32, 06F901 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by SENTAN-JST and the Aoyama Gakuin University-Supported ‘‘Early Eagle Program.’’ The authors thank Associate Prof. Tomohiro Nishitani for fruitful discussion on the photocurrent measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Fuchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuchi, S., Sato, T., Idei, M. et al. Effects of GaAs Surface Treatment Processes on Photocurrent Properties of Cs/p-GaAs (001) Fabricated Using a MOCVD–NEA Multichamber System. J. Electron. Mater. 48, 1679–1685 (2019). https://doi.org/10.1007/s11664-018-06919-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-06919-4

Keywords

Navigation