Skip to main content
Log in

Electrical Evaluation of DNA Stretched and Immobilized Between Triangular-Shaped Electrodes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

As a step toward applications for biosensors, we characterized the electrical properties of λDNA molecules via their current–voltage characteristics and complex impedance plots. λDNA molecules were introduced to a microfluidic device using a microchannel (depth, 50 μm; width, 500 μm; length, 10 mm) and electrostatically stretched and immobilized in the 14-μm gap between two triangular-shaped microlithographed aluminum electrodes by applying an alternating voltage of 1 MHz and 20 Vp–p. The aligned λDNA showed nonlinear current–voltage characteristics. From the complex impedance plots of the λDNA molecules, an equivalent circuit was obtained as a series connection of two resistance–capacitance parallel circuits. Finally, we demonstrated that the electrical characteristics of the λDNA between the electrodes varied with the number of immobilized λDNA molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.C. Seeman, Trends Biotechnol. 17, 437 (1999).

    Article  Google Scholar 

  2. N.C. Seeman, Nature 421, 427 (2003).

    Article  Google Scholar 

  3. P.W.K. Rothemund, Nature 440, 297 (2006).

    Article  Google Scholar 

  4. C.J. Murphy, M.R. Arkin, Y. Jenkins, N.D. Ghatlia, S.H. Bossmann, N.J. Turro, and J.K. Barton, Science 262, 1025 (1993).

    Article  Google Scholar 

  5. S. Tuukkanen, A. Kuzyk, J.J. Toppari, V.P. Hytonen, T. Ihalainen, and P. Torma, Appl. Phys. Lett. 87, 183102 (2005).

    Article  Google Scholar 

  6. P. Romano, A. Polcari, B. Verruso, V. Colantuoni, W. Saldarriaga, and E. Baca, J. Appl. Phys. 102, 103720 (2007).

    Article  Google Scholar 

  7. T. Tsukamoto, Y. Ishikawa, Y. Sengoku, and N. Kurita, Chem. Phys. Lett. 474, 362 (2009).

    Article  Google Scholar 

  8. T.G. Drummond, M.G. Hill, and J.K. Barton, Nat. Biotechnol. 21, 1192 (2003).

    Article  Google Scholar 

  9. S. Sato, K. Fujita, M. Kanazawa, K. Mukumoto, K. Ohtsuka, and S. Takenaka, Anal. Chim. Acta 645, 30 (2009).

    Article  Google Scholar 

  10. C. Yamahata, D. Collard, T. Takekawa, M. Kumemura, G. Hashiguchi, and H. Fujita, Biophys. J. 94, 63 (2008).

    Article  Google Scholar 

  11. E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, Nature 391, 775 (1998).

    Article  Google Scholar 

  12. K. Ijiro, Y. Matsuo, and Y. Hashimoto, Mol. Cryst. Liq. Cryst. 445, 207 (2006).

    Article  Google Scholar 

  13. T. Himuro, R. Araki, S. Sato, S. Takenaka, and T. Yasuda, IEE J. Trans. Sens. Micromach. 136, 425 (2016).

    Article  Google Scholar 

  14. T. Himuro, S. Sato, S. Takenaka, and T. Yasuda, Electroanalysis 28, 1448 (2016).

    Article  Google Scholar 

  15. T. Heim, D. Deresmes, and D. Vuillaume, J. Appl. Phys. 96, 2927 (2004).

    Article  Google Scholar 

  16. M. Kumemura, D. Collard, C. Yamahata, N. Sakaki, G. Hashiguchi, and H. Fujita, ChemPhysChem 8, 1875 (2007).

    Article  Google Scholar 

  17. M. Ueda, H. Iwasaki, O. Kurosawa, and M. Washizu, Jpn. J. Appl. Phys. 38, 2118 (1999).

    Article  Google Scholar 

  18. J.T.S. Irvine, D.C. Sinclair, and A.R. West, Adv. Mater. 2, 132 (1990).

    Article  Google Scholar 

  19. I.I. Suni, Trends Anal. Chem. 27, 604 (2008).

    Article  Google Scholar 

  20. P.L. Bonora, F. Deflorian, and L. Fedrizzi, Electrochim. Acta 41, 1073 (1995).

    Article  Google Scholar 

  21. F. Huet, J. Power Sour. 70, 59 (1998).

    Article  Google Scholar 

  22. C.Y. Yuh and J.R. Selman, AIChE J. 34, 1949 (1998).

    Article  Google Scholar 

  23. C.D. Feng, Y.D. Ming, P.J. Hesketh, S.M. Gendel, and J.R. Stetter, Sens. Actuat. B Chem. 36, 1 (1996).

    Article  Google Scholar 

  24. C. Berggren, B. Bjarnason, and G. Johansson, Electroanalysis 13, 173 (2001).

    Article  Google Scholar 

  25. A.B. Kharitonov, L. Alfona, E. Katz, and I. Willner, J. Electroanal. Chem. 487, 133 (2000).

    Article  Google Scholar 

  26. L. Alfonta, E. Katz, and I. Willner, Anal. Chem. 72, 927 (2000).

    Article  Google Scholar 

  27. A. Bardea, F. Patolsky, A. Dagan, and I. Willner, Chem. Commun. 1, 21 (1999).

    Article  Google Scholar 

  28. F. Patolsky, A. Lichtenstein, and I. Willner, J. Am. Chem. Soc. 123, 5194 (2001).

    Article  Google Scholar 

  29. H. Cai, Y. Xu, P.G. He, and Y.Z. Fang, Electroanalysis 15, 1864 (2003).

    Article  Google Scholar 

  30. W. Yang, J.E. Butler, J.N. Russell, and R.J. Hamers, Langmuir 20, 6778 (2004).

    Article  Google Scholar 

  31. A. Sadkowski, J. Electroanal. Chem. 481, 222 (2000).

    Article  Google Scholar 

  32. A. Sadkowski, J. Electroanal. Chem. 481, 232 (2000).

    Article  Google Scholar 

  33. F. Berthier, J.-P. Diard, and R. Michel, J. Electroanal. Chem. 510, 1 (2001).

    Article  Google Scholar 

  34. K. Kishi, T. Yasuda, and H. Takeshita, Leg. Med. 3, 69 (2001).

    Article  Google Scholar 

  35. H. Takeshita, T. Nakajima, K. Mogi, Y. Kaneko, T. Yasuda, R. Iida, and K. Kishi, Clin. Chem. 50, 446 (2004).

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a Grant-in-Aid for Young Scientists (Grant No.: JP18K13769) and a Grant-in-Aid for Challenging Exploratory Research (Grant No.: JP16K14281) from JSPS. The authors gratefully thank Dr. Masanori Eguchi of the National Institute of Technology, Kure College for his help with electron-beam lithography exposure and I–V measurements. We are grateful to Prof. Seiichi Suzuki of Seikei University for his help with fluorescence observation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Himuro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Himuro, T., Tsukamoto, S. & Saito, Y. Electrical Evaluation of DNA Stretched and Immobilized Between Triangular-Shaped Electrodes. J. Electron. Mater. 48, 1562–1567 (2019). https://doi.org/10.1007/s11664-018-06899-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-06899-5

Keywords

Navigation