Skip to main content

Advertisement

Log in

Theoretical Investigation of Half-Metallic Oxides XFeO3 (X = Sr, Ba) via Modified Becke–Johnson Potential Scheme

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The cubic XFeO3 (X = Sr, Ba) perovskite oxides are studied for their thermodynamic stability in the ferromagnetic phase by using density functional theory calculations. We also explore the elastic properties of these compounds in terms of elastic constants C ij, bulk modulus B, shear modulus G, anisotropy factor A, Poisson’s ratio ν and the B/G ratio. The electronic properties are examined to elucidate the magnetic order, and the thermoelectric properties of XFeO3 (X = Sr, Ba) materials are also presented. The modified Becke–Johnson local density approximation scheme has been used to compute the electronic band structure and density of states, which show that these materials are half-metallic ferromagnetic. We study the magnetic properties by computing the crystal field energy (ΔCF), John–Teller energy (ΔJT) and the exchange splitting energies Δx(d) and Δx(pd). Our results indicate that strong hybridization causes a decrease in the magnetic moment of Fe, which then produces permanent magnetic moments in the nonmagnetic sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993).

    Article  Google Scholar 

  2. M.B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).

    Article  Google Scholar 

  3. J.G. Bednorz and K.A. Müller, Z. Phys. B 64, 189 (1986).

    Article  Google Scholar 

  4. K.F. Wang, J.M. Liu, and Z.F. Ren, Adv. Phys. 58, 321 (2009).

    Article  Google Scholar 

  5. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).

    Article  Google Scholar 

  6. M. Rashid, Z. Abbas, M. Yaseen, Q. Afzal, A. Mahmood, and S.M. Ramay, J. Super. Nov. Mag. (2017) (published online)

  7. A.W. Sleight, J.L. Gillson, and P.E. Bierstedt, Solid State Commun. 17, 27 (1975).

    Article  Google Scholar 

  8. P.G. Silvestrov and E.G. Mishchenko, Phys. Rev. B 74, 165301 (2006).

    Article  Google Scholar 

  9. S. Hussain, S.K. Hasanain, G.H. Jaffari, and S.I. Sha, Curr. Appl. Phys. 15, 194 (2015).

    Article  Google Scholar 

  10. S. Eitssayeam, U. Intatha, K. Pengpat, G. Rujijanagul, K.J.D. MacKenzie, and T. Tunkasir, Curr. Appl. Phys. 9, 993 (2009).

    Article  Google Scholar 

  11. E.S. Goh, L.H. Ong, T.L. Yoon, and K.H. Chew, Curr. Appl. Phys. 16, 1491 (2016).

    Article  Google Scholar 

  12. J. Zhou, X.C. Wang, G.F. Chen, and B.H. Yang, Curr. Appl. Phys. 15, 1549 (2015).

    Article  Google Scholar 

  13. A.E. Bocquet, A. Fujimori, T. Mizokawa, T. Saitoh, H. Namatame, S. Suga, N. Kimizuka, Y. Takeda, and M. Takano, Phys. Rev. B 45, 1561 (1992).

    Article  Google Scholar 

  14. T. Takeda, Y. Yamaguchi, and H. Watanabe, J. Phys. Soc. Jpn. 33, 967 (1972).

    Article  Google Scholar 

  15. Y.M. Zhao, X.J. Yang, Y.F. Zheng, D.L. Li, and S.Y. Chen, Solid State Commun. 115, 365 (2000).

    Article  Google Scholar 

  16. Y. Takeda, K. Kanno, T. Takeda, O. Yamamoto, M. Takano, N. Nakayama, and Y. Bando, J. Solid State Chem. 63, 237 (1986).

    Article  Google Scholar 

  17. Y. Ohno, D.K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D.D. Awshalom, Nature (London) 402, 790 (1999).

    Article  Google Scholar 

  18. H. Kobayashi, F. Iga, and Y. Nishihara, Nucl. Inst. Met. Phys. Res. B 76, 258 (1993).

    Article  Google Scholar 

  19. P.K. Gallagher, J.B. MacChesney, and D.N.E. Buchanan, J. Chem. Phys. 43, 516 (1965).

    Article  Google Scholar 

  20. J.B. MacChesney, J.F. Potter, R.C. Sherwood, and H.J. Williams, J. Chem. Phys. 43, 3317 (1965).

    Article  Google Scholar 

  21. F. Iga, Y. Nishihara, G. Kido, and Y. Takeda, J. Magn. Magn. Mater. 104, 1969 (1992).

    Article  Google Scholar 

  22. J. Hombo, Y. Matsumoto, and T. Kawano, J. Solid State Chem. 84, 138 (1990).

    Article  Google Scholar 

  23. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).

    Article  Google Scholar 

  24. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K, An augmented plane wave + local orbitals program for calculating crystal properties (Austria: Karlheinz Schwarz, Techn. Universit¨at Wien, 2001).

    Google Scholar 

  25. A.D. Becke and E.R. Johnson, J. Chem. Phys. 124, 221101 (2006).

    Article  Google Scholar 

  26. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 22640 (2009).

    Google Scholar 

  27. Q. Mahmood, M. Hassan, and N.A. Noor, J. Phys. Condens Matter 28, 506001 (2016).

    Article  Google Scholar 

  28. Q. Mahmood, S.M. Alay-e-Abbas, M. Hassan, and N.A. Noor, J. Alloys Compd. 688, 899 (2017).

    Article  Google Scholar 

  29. M.B. Saddique, M. Rashid, A. Afzal, S.M. Ramay, F. Aziz, and A. Mahmood, Curr. Appl. Phys. 17, 1079 (2017).

    Article  Google Scholar 

  30. G.K.H. Madsen and D.J. Singh, Compd. Phys. Commun. 175, 67 (2006).

    Article  Google Scholar 

  31. G.K.H. Madsen, J. Am. Chem. Soc. 128, 12140 (2006).

    Article  Google Scholar 

  32. G.D. Mahan and J.O. Sofo, Proc. Natl. Acad. Sci. (USA) 93, 7436 (1996).

    Article  Google Scholar 

  33. N.A. Noor, S.M. Alay-e-Abbas, M. Hassan, I. Mahmood, Z.A. Alahmed, and A.H. Reshak, Phil. Mag. 97, 1884 (2017).

    Article  Google Scholar 

  34. N.A. Noor, M. Rashid, S.M. Alay-e-Abbas, M. Raza, A. Mahmood, and S.M. Ramay, Mater. Sci. Semi. Process. 49, 40 (2016).

    Article  Google Scholar 

  35. S.M. Ramay, M. Hassan, Q. Mahmood, and A. Mahmood, Curr. Appl. Phys. 17, 1038 (2017)

  36. F. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944).

    Article  Google Scholar 

  37. L.Q. Jiang, J.K. Guo, H.B. Liu, M. Zhu, X. Zhou, P. Wuc, and C.H. Lia, J. Phys. Chem. Solids 67, 1531 (2006).

    Article  Google Scholar 

  38. H. Reshak and M. Jamal, J. Alloys Compd. 543, 147 (2012).

    Article  Google Scholar 

  39. F. Nye, Physical properties of crystals: their representation by tensors and matrices (Oxford: Oxford University Press, 1985).

    Google Scholar 

  40. H. Rached, D. Rached, M. Rabah, R. Khenata, and A.H. Reshak, Phys. B 405, 3515 (2010).

    Article  Google Scholar 

  41. V. Tvergaard and J.W. Hutshinson, J. Am. Ceram. Soc. 71, 157 (1988).

    Article  Google Scholar 

  42. R. Hill, Proc. Phys. Soc. Lond. A 65, 349 (1952).

    Article  Google Scholar 

  43. Z.J. Wu, H.P. Zhao, X.F. Xiang, X.F. Hao, X.J. Liu, and J. Meng, Phys. Rev. B 76, 054115 (2007).

    Article  Google Scholar 

  44. H. Ullah, G. Murtaza, R. Khenata, S. Mohammad, A. Manzar, B. Omran, A. Ullah, and M. Muzammil, Indian J. Phys. 89, 1133 (2015).

    Article  Google Scholar 

  45. A. Bouhemadoua, R. Khenata, and M. Maamache, J. Mol. Struct. (Thoechem) 777, 5 (2006).

    Article  Google Scholar 

  46. C.W. Zhang, S.S. Yan, P.J. Wang, and Z. Zhang, Comp. Mat. Sci. 43, 710 (2008).

    Article  Google Scholar 

  47. J. Kubler, Phys. Rev. B 67, 220403 (2003).

    Article  Google Scholar 

  48. G.Y. Gao, K.L. Yao, E. Sas-ıo˘glu, L.M. Sandratskii, Z.L. Liu, and J.L. Jiang, Phys. Rev. B 75, 174442 (2007).

    Article  Google Scholar 

  49. A. Walsh, S.H. Wai, Y. Yan, M.M. Al-Jassim, and J.A. Turner, Phys. Rev. B 76, 165119 (2007).

    Article  Google Scholar 

  50. H.C. Choi, J.H. Shim, and B.I. Min, Phys. Rev. B 74, 172103 (2006).

    Article  Google Scholar 

  51. S. Sanvito, P. Ordejon, and N.A. Hill, Phys. Rev. B 63, 165206 (2001).

    Article  Google Scholar 

  52. A. Kumar, C.J. Fennie, and K.M. Rabe, Phys. Rev. B 86, 184429 (2012).

    Article  Google Scholar 

  53. F.X. Redl, C.T. Black, G.C. Papaefthymiou, R.L. Sandstrom, M. Yin, H. Zeng, C.B. Murray, and S.P. O’Brien, J. Am. Chem. Soc. 126, 14599 (2004).

    Article  Google Scholar 

  54. T. Takeda, Y. Yamaguchi, and H. Watanabe, J. Phys. Soc. Jpn. 33, 967 (1972).

    Article  Google Scholar 

  55. N. Hayashi, T. Yamamoto, H. Kageyama, M. Nishi, Y. Watanabe, T. Kawakami, Y. Matsushita, A. Fujimori, and M. Takano, Angew. Chem. 123, 12755 (2011).

    Article  Google Scholar 

  56. J. Blasco, J. Stankiewicz, and J. Garcia, J. Solid State Chem. 179, 898 (2006).

    Article  Google Scholar 

  57. V.E. Alexandrov, J. Maier, and R.A. Evarestov, Phys. Rev. B 77, 075111 (2008).

    Article  Google Scholar 

  58. Z.M. Baiyee, C. Chena, and F. Ciucci, Phys. Chem. Chem. Phys. 17, 23511 (2015).

    Article  Google Scholar 

  59. Z. Li, T. Iitaka, and T. Tohyama, Phys. Rev. B 86, 094422 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Rashid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maqsood, S., Rashid, M., Din, F.U. et al. Theoretical Investigation of Half-Metallic Oxides XFeO3 (X = Sr, Ba) via Modified Becke–Johnson Potential Scheme. J. Electron. Mater. 47, 2032–2041 (2018). https://doi.org/10.1007/s11664-017-6008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-6008-5

Keywords

Navigation