Skip to main content
Log in

Assessing Ink Transfer Performance of Gravure-Offset Fine-Line Circuitry Printing

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, the printing mechanism and performance of gravure-offset fine-line circuitry printing technology are investigated in terms of key printing parameters through experimental and theoretical analyses. First, the contact angles of the ink deposited on different substrates, blankets, and gravure metal plates are experimentally determined; moreover, their temperature and solvent content dependences are analyzed. Next, the ink solvent absorption and evaporation behaviors of the blankets at different temperatures, times, and numbers of printing repetitions are characterized by conducting experiments. In addition, while printing repeatedly, the surface characteristics of the blankets, such as the contact angle, vary with the amount of absorbed ink solvent, further affecting the ink transfer performance (ratio) and printing quality. Accordingly, the surface effect of the blanket due to ink solvent absorption on the ink contact angle is analyzed. Furthermore, the amount of ink transferred from the gravure plate to the blanket in the “off process” and from the blanket to the substrate in the “set process” is evaluated by conducting a simplified plate-to-plate experiment. The influences of loading rate (printing velocity), temperature, and solvent content on the ink transfer performance are addressed. Finally, the ink transfer mechanism is theoretically analyzed for different solvent contents using Surface Evolver. The calculation results are compared with those of the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Pudas, J. Hagberg, and S. Leppävuori, IEEE. Trans. Electron. Packag. Manuf. 25, 335 (2002).

    Article  Google Scholar 

  2. M. Pudas, J. Hagberg, and S. Leppävuori, Prog. Org. Coat. 49, 324 (2004).

    Article  Google Scholar 

  3. T.-M. Lee, J.-H. Noh, C.H. Kim, J. Jo, and D.-S. Kim, Thin Solid Films 518, 3355 (2010).

    Article  Google Scholar 

  4. N. Choi, H. Wee, S. Namc, J. Lavelle, and M. Hatalis, Microelectron. Eng. 91, 93 (2012).

    Article  Google Scholar 

  5. J. Hagberg, M. Pudas, S. Leppavouri, K. Elsey, and A. Logan, Microelectron. Int. 18, 32 (2001).

    Article  Google Scholar 

  6. E. Hrehorova, M. Rebros, A. Pekarovicova, B. Bazuin, and A. Ranganathan, J. Disp. Technol. 7, 318 (2011).

    Article  Google Scholar 

  7. I. Jung, Y.H. Jo, I. Kim, and H.M. Lee, J. Electron. Mater. 41, 115 (2012).

    Article  Google Scholar 

  8. J. Ryu, H.-S. Kim, and H.T. Hahn, J. Electron. Mater. 40, 42 (2011).

    Article  Google Scholar 

  9. A. Ortega, B. Park, and N.S. Kim, J. Electron. Mater. 44, 778 (2015).

    Article  Google Scholar 

  10. S.-H. Kim, J. Engel, C. Liu, and D.L. Jones, J. Micromech. Microeng. 15, 912 (2005).

    Article  Google Scholar 

  11. J. Engel, J. Chen, and C. Liu, J. Micromech. Microeng. 13, 359 (2003).

    Article  Google Scholar 

  12. W.Y. Chang, T.H. Fang, S.H. Yeh, and Y.C. Lin, J. Sensors 9, 1188 (2009).

    Article  Google Scholar 

  13. Y. Hasegawa, M. Shikida, D. Ogura, Y. Suzuki, and K. Sato, J. Micromech. Microeng. 18, 1 (2008).

    Article  Google Scholar 

  14. H.-C. Cheng, C.-H. Ma, C.-F. Yu, S.-T. Lu, and W.-H. Chen, Comput. Mater. Contin. 38, 129 (2013).

    Google Scholar 

  15. H.-C. Cheng, H.-H. Huang, W.-H. Chen, and S.-T. Lu, J. Electron. Mater. 44, 1220 (2015).

    Article  Google Scholar 

  16. S. Huang, J. Shih, A. Wei, M.C. Lin, C.S. Huang, H.T. Lin, C.L. Lin, S.Y. Chang, C.T. Wang, J. Shen, C.H. Hsiao, S.T. Lu, J. Hu and C.T. Liu, in Proceeding of International Conference on Flexible and Printed Electronics (2012).

  17. S. Huang, J. Shih, A. Wei, M.C. Lin, C.S. Huang, H.T. Lin, C.L. Lin, S.Y. Chang, C.T. Wang, J. Shen, C.H. Hsiao, S.T. Lu, J. Hu and C.T. Liu, in Proceeding of MRS Fall Meeting and Exhibit (2012).

  18. S. Hoehla, S. Garner, M. Hohmann, O. Kuhls, X. Li, A.Schindler and N. Fruehauf, in Proceeding of Electronic Displays Conference (2011).

  19. Flexible Glass for Printed Electronics. (SCHOTT news), http://www.schott.com/english/news/press.html?NID=com4 937. Accessed. 06 April 2016.

  20. M. Pudas, J. Hagberg, and S. Leppävuori, J. Eur. Ceram. Soc. 24, 2943 (2004).

    Article  Google Scholar 

  21. W. Luo, W. Hu, and S. Xiao, J. Phys. Chem. C 112, 2359 (2008).

    Article  Google Scholar 

  22. T.-M. Lee, J.-H. Noh, I. Kim, D.-S. Kim, and S. Chun, J. Appl. Phys. 108, 102802 (2010).

    Article  Google Scholar 

  23. K.A. Brakke, Surface Evolver Manual. Minneapolis, version 1.98 (The Geometry Center, Minneapolis, 1994).

  24. W. Chauvenet, A Manual of Spherical and Practical Astronomy, V. II. (1863), Reprint of 1891, 5th edn. (Dover, New York, 1960), pp. 474–566.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Hwa Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, HC., Chen, YW., Chen, WH. et al. Assessing Ink Transfer Performance of Gravure-Offset Fine-Line Circuitry Printing. J. Electron. Mater. 47, 1832–1846 (2018). https://doi.org/10.1007/s11664-017-5967-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5967-x

Keywords

Navigation