Skip to main content
Log in

Effects of Grain Orientation on Cu6Sn5 Growth Behavior in Cu6Sn5-Reinforced Composite Solder Joints During Electromigration

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electromigration is a major reliability problem in composite solder joints. Due to the anisotropy of the β-Sn crystal structure, the Sn grain orientations present in the solder matrix dominate the principal failure mechanism in solder joints under electric current stressing. In this work, the Cu6Sn5 growth behavior in Cu6Sn5-reinforced composite solder joints with three different Sn grain orientations was investigated at current density of 104 A/cm2 at room temperature. Micron-sized Cu particles were added to Sn-3.5Ag solder at 2% volume fraction using an in situ method. After current stressing for 528 h, the polarity effect in the composite solder joint was greatest for an angle (θ) between the c-axis and electron flow direction of 30°, resulting in higher growth rate of Cu6Sn5 in the solder matrix compared with composite solder joints with θ of 60° or 90°. There were no noticeable changes in the composite solder joint with θ of 90°. The growth behavior of Cu6Sn5, Cu atomic motion, and Cu diffusivity in the composite solder joints with different Sn grain orientations were analyzed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Guo, J. Mater. Sci.: Mater. Electron. 18, 129 (2006).

    Google Scholar 

  2. S. Choi, J.P. Lucas, K.N. Subramanian, and T.R. Bieler, J. Mater. Sci.: Mater. Electron. 11, 497 (2000).

    Google Scholar 

  3. S. Choi, T.R. Bieler, J.P. Lucas, and K.N. Subramanian, J. Electron. Mater. 28, 1209 (1999).

    Article  Google Scholar 

  4. F. Guo, J.P. Lucas, and K.N. Subramanian, J. Mater. Sci.: Mater. Electron. 12, 27 (2001).

    Google Scholar 

  5. F. Guo, S. Choi, J.P. Lucas, and K.N. Subramanian, J. Electron. Mater. 29, 1241 (2000).

    Article  Google Scholar 

  6. D. Lin, G.X. Wang, T.S. Srivatsan, M. Al-Hajri, and M. Petraroli, Mater. Lett. 53, 333 (2002).

    Article  Google Scholar 

  7. K.N. Subramanian, T.R. Bieler, and J.P. Lucas, J. Electron. Mater. 28, 1176 (1999).

    Article  Google Scholar 

  8. F. Tai, F. Guo, M.T. Han, Z.D. Xia, Y.P. Lei, and Y.W. Shi, Mater. Sci. Eng., A 527, 3335 (2010).

    Article  Google Scholar 

  9. S. Ismathullakhan, H.Y. Lau, and Y.C. Chan, Microsyst. Technol. 19, 1069 (2012).

    Article  Google Scholar 

  10. R.H. Zhang, G.C. Xu, X.T. Wang, F. Guo, A. Lee, and K.N. Subramanian, J. Electron. Mater. 39, 2513 (2010).

    Article  Google Scholar 

  11. A. Sharma, D.E. Xu, J. Chow, M. Mayer, H.R. Sohn, and J.P. Jung, Electron. Mater. Lett. 11, 1072 (2015).

    Article  Google Scholar 

  12. Z.B. Yang, W. Zhou, and P. Wu, J. Alloys Compd. 581, 202 (2013).

    Article  Google Scholar 

  13. Y. Kim, S. Nagao, T. Sugahara, K. Suganuma, M. Ueshima, H.J. Albrecht, K. Wilke, and J. Strogies, J. Electron. Mater. 43, 4428 (2014).

    Article  Google Scholar 

  14. M.N. Bashir, A.S.M.A. Haseeb, A.Z.M.S. Rahman, M.A. Fazal, and C.R. Kao, J. Mater. Sci. 50, 6748 (2015).

    Article  Google Scholar 

  15. Y. Kim, S. Nagao, T. Sugahara, K. Suganuma, M. Ueshima, H.J. Albrecht, K. Wilke, and J. Strogies, J. Mater. Sci.: Mater. Electron. 25, 3090 (2014).

    Google Scholar 

  16. Y. Wang, J. Han, L. Ma, Y. Zuo, and F. Guo, J. Electron. Mater. 45, 6095 (2016).

    Article  Google Scholar 

  17. M.H. Lu, D.Y. Shih, P. Lauro, C. Goldsmith, and D.W. Henderson, Appl. Phys. Lett. 92, 211909 (2008).

    Article  Google Scholar 

  18. J. Han, F. Guo, and J.P. Liu, J. Alloys Compd. 698, 706 (2017).

    Article  Google Scholar 

  19. T.L. Yang, J.J. Yu, C.C. Li, Y.F. Lin, and C.R. Kao, J. Alloys Compd. 627, 281 (2015).

    Article  Google Scholar 

  20. J. Han, S. Tan, and F. Guo, J. Electron. Mater. 45, 6086 (2016).

    Article  Google Scholar 

  21. S.-K. Seo, S.K. Kang, M.G. Cho, D.-Y. Shih, and H.M. Lee, J. Electron. Mater. 38, 2461 (2009).

    Article  Google Scholar 

  22. B.F. Dyson, J. Appl. Phys. 38, 3408 (1967).

    Article  Google Scholar 

  23. M.L. Huang, J.F. Zhao, Z.J. Zhang, and N. Zhao, Acta Mater. 100, 98 (2015).

    Article  Google Scholar 

  24. C.F. Lin, S.H. Lee, and C.M. Chen, Metall. Mater. Trans. A 43, 2571 (2012).

    Article  Google Scholar 

  25. Y.A. Shen and C. Chen, Scripta Mater. 128, 6 (2017).

    Article  Google Scholar 

  26. D.C. Yeh and H.B. Huntington, Phys. Rev. Lett. 53, 1469 (1984).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support of this work by the National Natural Science Foundation of China (No. 51401006), Beijing Natural Science Foundation (Nos. 2162005, 2172006, and 2172009), Beijing Nova Program (Z161100004916155), and Science and Technology Project of Beijing Municipal Education Commission (KM201710005003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Han or Fu Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Wang, Y., Tan, S. et al. Effects of Grain Orientation on Cu6Sn5 Growth Behavior in Cu6Sn5-Reinforced Composite Solder Joints During Electromigration. J. Electron. Mater. 47, 1705–1712 (2018). https://doi.org/10.1007/s11664-017-5898-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5898-6

Keywords

Navigation