Skip to main content
Log in

Study of Trapping Phenomena in SrTiO3 by Thermally Stimulated Techniques

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermally stimulated current (TSC), thermally stimulated depolarization current (TSDC), and thermally stimulated luminescence (TSL) spectroscopies were combined to study trapping phenomena in undoped bulk SrTiO3 crystals. Electrical measurements were also performed and showed that the crystals are highly resistive in the dark but exhibited an unusually high photocurrent upon 400-nm illumination. Several traps were revealed in both TSC and TSDC spectra between 83 K and 450 K in such a broad temperature range and their activation energies were extrapolated from the trap positions (peaks). TSL spectra demonstrate similar characteristics comparable to TSC and TSDC spectra, though there are some differences because of different excitation and recombination mechanisms. This work reveals the presence of large number of traps in SrTiO3 single crystals, which are most likely the source of many of the interesting phenomena in SrTiO3 such as transient and persistent photoconductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Stocker, J. Hanzig, M. Zschornak, E. Mehner, S. Jachalke, C. Richter, F. Hanzig, F. Meutzner, T. Leisegang, and D.C. Meyer, Cryst. Res. Technol. 52, 1600222 (2017).

    Article  Google Scholar 

  2. M.C. Tarun, F.A. Selim, and M.D. McCluskey, Phy. Rev. Lett. 111, 187403 (2013).

    Article  Google Scholar 

  3. R. Chen and Y. Kirsh, Analysis of Thermally Stimulated Processes (New York: Pergamon Press, 1981).

    Google Scholar 

  4. D.C. Look, Semiconductors and Semimetals, ed. R.K. Willardson and A. Beer (New York, London: Academic Press, 1983), p. 75.

    Google Scholar 

  5. J. Vanderschueren and J. Gasiot, Field-Induced Thermally Stimulated Currents.Thermally Stimulated Relaxation in Solids. Topics in Applied Physics, Vol. 37, ed. P. Braunlich (Berlin: Springer, 1979), p. 135. ISBN 978-3-540-34797-2

    Chapter  Google Scholar 

  6. R. Chen and S. McKeever, Theory of Thermoluminescence and Related Phenomena (Singapore: World Scientific, 1997).

    Book  Google Scholar 

  7. K. Mahesh, P. Weng, and C. Furetta, Thermoluminescence in Solids and Its Applications (Kent, England: Nuclear Technology Publishing, 1989).

    Google Scholar 

  8. A.K. Ghosh, R.R. Addiss Jr., and R.B. Lauer, J. Appl. Phys. 44, 3798 (1973).

    Article  Google Scholar 

  9. Z. Bryknar, Z. Potucek, V. Trepakov, M.Y. Shen, and T. Goto, Radiat. Eff. Defects Soilds 154, 341 (2001).

    Article  Google Scholar 

  10. W. Liu and C.A. Randall, J. Am. Ceram. Soc. 91, 3245 (2008).

    Article  Google Scholar 

  11. B. Lakshminarayanan, S. Akbar, C. Wang, and M. Alim, J. Appl. Phys. 39, 4830 (2000).

    Article  Google Scholar 

  12. Z.-Q. Fang, D.C. Look, B. Claflin, S. Haffouz, H. Tang, and J. Webb, Phys. Stat. Sol. (c) 2, 2757 (2005).

    Article  Google Scholar 

  13. M. Ouwerkerk, F.J. Veldkamp, and J. Schoonman, Solid State Ionics 22, 173 (1987).

    Article  Google Scholar 

  14. J. Pozniak, Acta Phys. Polonica A 107, 959 (2005).

    Article  Google Scholar 

  15. J. Ji, L.A. Boatner, and F.A. Selim, Appl. Phys. Lett. 105, 041102 (2014).

    Article  Google Scholar 

  16. D.T. Mackay, C.R. Varney, J. Buscher, and F.A. Selim, J. Appl. Phys. 112, 023522 (2012).

    Article  Google Scholar 

  17. V.M. Poole and M.D. McCluskey, in SPIE Conference Proceedings (2016), pp. 9749N.

  18. J. Park, U. Kim, and K. Char, Appl. Phys. Lett. 108, 092106 (2016).

    Article  Google Scholar 

  19. F.A. Selim, D. Winarski, C.R. Varney, M.C. Tarun, J. Ji, and M.D. McCluskey, Results Phys. 5, 28 (2015).

    Article  Google Scholar 

  20. Y. Seo, M.Y. Song, S. Park, and T.G. Kim, Appl. Phys. Lett. 100, 243501 (2012).

    Article  Google Scholar 

  21. N. Tiwari, R.K. Kuraria, and R. Tamrakar, J. Radiat. Res. Appl. Sci. 7, 542 (2014).

    Article  Google Scholar 

  22. B. Tastekin, M. Turemis, M. I. Kati, I. C. Keskin, R. Kibar, A. Cetin, and N. Can, Conference on micro-Raman spectroscopy and luminescence studies in the earth and planetary sciences (CORALS II). LPI Contribution No. 1616, 76 (2011).

  23. K. van Benthem, C. Elsässer, and R.H. French, J. Appl. Phys. 90, 6156 (2001).

    Article  Google Scholar 

  24. V.V. Laguta, M.D. Glinchuk, I.P. Bykov, A. Cremona, P. Galinetto, E. Giulotto, L. Jastrabik, and J. Rosa, J. Appl. Phys. 93, 6056 (2003).

    Article  Google Scholar 

  25. F. Ei Kamel, P. Gonon, F. Jomni, and B. Yangui, J. Appl. Phys. 100, 054107 (2006).

    Article  Google Scholar 

  26. H. Yamamoto, S. Okamoto, and H. Kobayashi, J. Lumin. 100, 325 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buguo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Saadatkia, P., Selim, F.A. et al. Study of Trapping Phenomena in SrTiO3 by Thermally Stimulated Techniques. J. Electron. Mater. 47, 604–611 (2018). https://doi.org/10.1007/s11664-017-5818-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5818-9

Keywords

Navigation