Skip to main content
Log in

Residual Strain in PCBs with Cu-Plated Holes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The residual strain in pure printed circuit boards (PCBs) and PCBs with Cu-plated holes has been obtained by measurement of the temperature dependence of their dilatational characteristics in the x, y, and z directions up to 240°C. Shrinkage in all directions was observed for all samples of both materials in the first thermal cycle. No permanent length changes were observed in the second or subsequent thermal cycles. The residual strain was determined from the difference in relative elongation between the first and second thermal cycles. Relaxation of residual strain occurred only in the first thermal cycle, as a thermally activated process. The highest value of relaxed residual strain was found in the z direction for both materials. Relaxation of residual strain in the z direction of the pure PCB occurred only in the negative strain range, whereas relaxation of the PCB with Cu-plated holes occurred in both the positive and negative strain ranges. The relaxation of the positive strain in the PCB with Cu-plated holes in the z direction implies that this part of the PCB was under pressure during its preparation. This relaxation is a consequence of the high coefficient of thermal expansion of PCB laminate in this direction, which can also lead to cracks in Cu holes when the material is heated above the glass-transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Dušek and A. Rudajevová, J. Mater. Sci. Mater. Electron. 28, 1070 (2017).

    Article  Google Scholar 

  2. C.A. Smith, Polym. Test. 52, 234 (2016).

    Article  Google Scholar 

  3. H. Qi, S. Ganesan, and M. Pecht, Microelectron. Reliab. 48, 663 (2008).

    Article  Google Scholar 

  4. S. Belyakov, H.V. Atkinson, and S.P.A. Gill, J. Electron. Mater. 39, 1295 (2010).

    Article  Google Scholar 

  5. T. Kim, J. Lee, Y. Kim, J.-M. Kim, and Z. Yuan, Mater. Trans. 50, 2695 (2009).

    Article  Google Scholar 

  6. A. Géczy, M. Fej\Hos, L. Tersztyánszky, A. Kemler, and A. Szabó, in Proceedings of 2014 37th International Spring Seminar on Electronics Technology (IEEE, 2014), pp. 215–220.

  7. A. Geczy, M. Fejos, and L. Tersztyánszky, Solder. Surf. Mt. Technol. 27, 61 (2015).

    Article  Google Scholar 

  8. G.A. Schuerink, M. Slomp, W.W. Wits, R. Legtenberg, and E.A. Kappel, Procedia CIRP 9, 55 (2013).

    Article  Google Scholar 

  9. D. Goval, H. Azimi, K.P. Chong, and M.-J. Lii, in Reliability Physics Symposium, 1997, 35th Annual Proceedings (IEEE, 1997), pp. 129–135.

  10. G. Subbarayan, K. Ramakrishna, and B.G. Sammakia, J. Electron. Packag. 119, 260 (1997).

    Article  Google Scholar 

  11. K. Ramakrishna, G. Subbarayan, and B. G. Sammakia, in Proceedings of First ASMEJSME Joint Electronic Packaging Conference (EEP, 1992), pp. 9–12.

  12. A. Salahouelhadj, M. Martiny, S. Mercier, L. Bodin, D. Manteigas, and B. Stephan, Microelectron. Reliab. 54, 204 (2014).

    Article  Google Scholar 

  13. H.R. Chou, A.P. Singh, M. Saravanan, and B. Varaprasad, IEEE Trans. Compon. Packag. Manuf. Technol. 6, 926 (2016).

    Article  Google Scholar 

  14. M. Hart, in Microelectronics Packaging Conference EMPC 2015 European (IEEE, 2015), pp. 1–5.

  15. E. Suhir, R. Ghaffarian, and J. Nicolics, J. Mater. Sci. Mater. Electron. 26, 10062 (2015).

    Article  Google Scholar 

  16. S. Chung, S. Oh, T. Lee, and M. Park, in Thermal, Mechanical and Multi-physics Simulation and Experiments in Microelectronics and Microsystems, Eurosime 2014 15th International Conference on (IEEE, 2014), pp. 1–5.

  17. M. Weinhold and G. Yen, Circuit World 29, 24 (2003).

    Article  Google Scholar 

  18. A. Rudajevová, J. Prokeš, and M. Varga, Chem. Pap. 71, 393 (2017).

    Article  Google Scholar 

  19. M. Mengel, J. Mahler, and W. Schober, J. Reinf. Plast. Compos. 23, 1755 (2004).

    Article  Google Scholar 

  20. F. Su, R. Mao, J. Xiong, K. Zhou, Z. Zhang, J. Shao, and C. Xie, Microelectron. Reliab. 52, 1189 (2012).

    Article  Google Scholar 

  21. L.-N. Ji, Y. Gong, and Z.-G. Yang, Microelectron. Reliab. 50, 1163 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Dušek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudajevova, A., Dušek, K. Residual Strain in PCBs with Cu-Plated Holes. J. Electron. Mater. 46, 6984–6991 (2017). https://doi.org/10.1007/s11664-017-5714-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5714-3

Keywords

Navigation