Skip to main content
Log in

An Amperometric Acetylcholinesterase Sensor Based on the Bio-templated Synthesis of Hierarchical Mesoporous Bioactive Glass Microspheres

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work describes the synthesis of three-dimensional hollow hierarchical mesoporous bioactive glass (HMBG) microspheres based on Herba leonuri pollen grains via a hydrothermal method. The HMBG microspheres perfectly copied the hierarchical porous structure and inner hollow structure constituting the double-layer surface of the natural Herba leonuri pollen grains. This structural mimicry of the pollen grains resulted in a higher degree of adsorption of acetylcholinesterase (AChE) on HMBG microspheres in comparison with mesoporous bioactive glass. Subsequently, an amperometric biosensor for the detection of Malathion was fabricated by immobilizing AChE onto an HMBG microspheres-modified carbon paste electrode. The biosensor response exhibited two good linear ranges during an incubation time of 10 min in the malathion concentration ranges of 0.02–50 ppb and 50–600 ppb, with a detection limit of 0.0135 ppb (S/N = 3). Overall, the prepared enzymatic biosensor showed high sensitivity in the rapid detection of Malathion and could be applied to detect pesticide residues in vegetable matter.

Graphical Abstract

An amperometric acetylcholinesterase (AChE) sensor was successfully prepared using HMBG microspheres as the carrier for adsorption of enzyme. The HMBG microspheres perfectly copied the hierarchical porous structure and inner hollow structure with a double-layer surface of the natural Herba leonuri pollen grains. The hybrid structures resulted in more AChE adsorption and protected the catalytic activity of AChE effectively, which made the sensor sensitive and stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.S. Pundir and N. Chauhan, Anal. Biochem. 429, 19 (2012).

    Article  Google Scholar 

  2. D. Štajnbaher and L. Zupančič-Kralj, J. Chromatogr. A 1015, 185 (2003).

    Article  Google Scholar 

  3. A. Di Corcia and M. Marchetti, Anal. Chem. 63, 580 (1991).

    Article  Google Scholar 

  4. S. Lacorte, G. Jeanty, J.L. Marty, and D. Barceló, J. Chromatogr. A 777, 99 (1997).

    Article  Google Scholar 

  5. Y. Zhang, M.A. Arugula, J.S. Kirsch, X. Yang, E. Olsen, and A.L. Simonian, L angmuir 31, 1462 (2015).

    Google Scholar 

  6. T. Liu, H. Su, X. Qu, P. Ju, L. Cui, and S. Ai, Sens. Actuators B: Chem. 160, 1255 (2011).

    Article  Google Scholar 

  7. X. Yan, C. Yu, X. Zhou, J. Tang, and D. Zhao, Angew. Chem. Int. Ed. 43, 5980 (2004).

    Article  Google Scholar 

  8. Q.H. Shi, J.F. Wang, J.P. Zhang, J. Fan, and G.D. Stucky, Adv. Mater. 18, 1038 (2006).

    Article  Google Scholar 

  9. C. Wu, Y. Ramaswamy, Y. Zhu, R. Zheng, R. Appleyard, A. Howard, and H. Zreiqat, Biomaterials 30, 2199 (2009).

    Article  Google Scholar 

  10. C. Wu, Y. Zhang, Y. Zhu, T. Friis, and Y. Xiao, Biomaterials 31, 3429 (2010).

    Article  Google Scholar 

  11. Y. Zhao, M. Wei, J. Lu, Z.L. Wang, and X. Duan, ACS Nano 3, 4009 (2009).

    Article  Google Scholar 

  12. Y. Zhang, X. Liu, and J. Huang, ACS Appl. Mater. Interfaces. 3, 3272 (2011).

    Article  Google Scholar 

  13. H. Wang, X. Gao, Y. Wang, J. Tang, C. Sun, X. Deng, and X. Niu, Mater. Lett. 76, 237 (2012).

    Article  Google Scholar 

  14. W. Liu, X. Wang, X. Gao, X. Chen, X. Yu, H. Wang, and X. Deng, Ceram. Int. 39, 8521 (2013).

    Article  Google Scholar 

  15. Y. Xia, W. Zhang, Z. Xiao, H. Huang, H. Zeng, X. Chen, F. Chen, Y. Gan, and X. Tao, J. Mater. Chem. 22, 9209 (2012).

    Article  Google Scholar 

  16. S.R. Hall, H. Bolger, and S. Mann, Chem. Commun. 22, 2784 (2003).

    Article  Google Scholar 

  17. Y.P. Guo, T.S. Lin, Y. Zhou, D.C. Jia, and Y.J. Guo, Microporous Mesoporous Mater. 127, 245 (2010).

    Article  Google Scholar 

  18. H. Cai, S. Sharma, W. Liu, W. Mu, W. Liu, X. Zhang, and Y. Deng, Biomacromol 15, 2540 (2014).

    Article  Google Scholar 

  19. J. Ding, H. Zhang, F. Jia, W. Qin, and D. Du, Sens. Actuators B. Chem. 199, 284 (2014).

    Article  Google Scholar 

  20. G. Yu, W. Wu, Q. Zhao, X. Wei, and Q. Lu, Biosens. Bioelectron. 68, 288 (2015).

    Article  Google Scholar 

  21. R. Kara and S. Ince, Pol. J. Food Nutr. Sci. 66, 57 (2016).

    Google Scholar 

  22. Y.H. Li, J. Wei, W. Luo, C. Wang, W. Li, S.S. Feng, Q. Yue, M.H. Wang, A.A. Elzatahry, Y.H. Deng, and D.Y. Zhao, Chem. Mater. 26, 2438 (2014).

    Article  Google Scholar 

  23. X. Yan, G. Wei, L. Zhao, J. Yi, H. Deng, L. Wang, G. Lu, and C. Yu, Microporous Mesoporous Mater. 132, 282 (2010).

    Article  Google Scholar 

  24. M.L. Raves, K. Giles, J.D. Schrag, M.F. Schmid, G.N.P. Jr., W. Chiu, A.J. Howard, I. Silman, and J.L. Sussman, Quaternary Structure of Tetrameric Acetylcholinesterase (US: Springer, 1998), pp. 351–356.

    Google Scholar 

  25. H.X. Zhou and K.A. Dill, Biochemistry 40, 11289 (2001).

    Article  Google Scholar 

  26. S. Andreescu, L. Barthelmebs, and J.L. Marty, Anal. Chim. Acta 464, 171 (2002).

    Article  Google Scholar 

  27. S. Wu, L. Zhang, L. Qi, S. Tao, X. Lan, Z. Liu, and C. Meng, Biosens. Bioelectron. 26, 2864 (2011).

    Article  Google Scholar 

  28. Y. Qu, Q. Sun, F. Xiao, G. Shi, and L. Jin, Bioelectrochemistry 77, 139 (2010).

    Article  Google Scholar 

  29. D. Du, X. Ye, J. Cai, J. Liu, and A. Zhang, Biosens. Bioelectron. 25, 2503 (2010).

    Article  Google Scholar 

  30. J. Wang, C. Timchalk, and Y. Lin, Environ. Sci. Technol. 42, 2688 (2008).

    Article  Google Scholar 

  31. P. Raghu, T.M. Reddy, K. Reddaiah, B.K. Swamy, and M. Sreedhar, Food Chem. 142, 188 (2014).

    Article  Google Scholar 

  32. H. Zhao, X. Ji, B. Wang, N. Wang, X. Li, R. Ni, and J. Ren, Biosens. Bioelectron. 65, 23 (2015).

    Article  Google Scholar 

  33. W. Zhao, P.Y. Ge, J.J. Xu, and H.Y. Chen, Environ. Sci. Technol. 43, 6724 (2009).

    Article  Google Scholar 

  34. C.V. Kumar and A. Chaudhari, J. Am. Chem. Soc. 122, 830 (2000).

    Article  Google Scholar 

  35. Q. Lang, L. Han, C. Hou, F. Wang, and A. Liu, Talanta 156, 34 (2016).

    Article  Google Scholar 

  36. Q. Zhang, Q. Xu, Y. Guo, X. Sun, and X. Wang, RSC Adv. 6, 24698 (2016).

    Article  Google Scholar 

  37. R.R. Dutta and P. Puzari, Biosens. Bioelectron. 52, 166 (2014).

    Article  Google Scholar 

  38. J. Yan, H. Guan, J. Yu, and D. Chi, Pestic. Biochem. Physiol. 105, 197 (2013).

    Article  Google Scholar 

  39. H.D. Cancar, S. Soylemez, Y. Akpinar, M. Kesik, S. Göker, G. Gunbas, M. Volkan, and L. Toppare, ACS Appl. Mater. Interfaces. 8, 8058 (2016).

    Article  Google Scholar 

  40. D. Du, M. Wang, J. Cai, and A. Zhang, Sens. Actuators, B Chem. 146, 337 (2010).

    Article  Google Scholar 

  41. S. Wu, X. Lan, W. Zhao, Y. Li, L. Zhang, H. Wang, M. Han, and S. Tao, Biosens. Bioelectron. 27, 82 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Nature Science Foundation of China (Grant 31402251) and the Ph.D. Programs Foundation of Ministry of Education of China (Grant 20130061120116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongsu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Z., Luo, R., Xi, L. et al. An Amperometric Acetylcholinesterase Sensor Based on the Bio-templated Synthesis of Hierarchical Mesoporous Bioactive Glass Microspheres. J. Electron. Mater. 46, 6578–6587 (2017). https://doi.org/10.1007/s11664-017-5707-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5707-2

Keywords

Navigation