Skip to main content
Log in

Stabilization of Ferroelectric Order in Bi1/2(Na0.8K0.2)1/2TiO3 Lead-Free Ceramics with Fe Doping

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The stabilization of ferroelectric order by Fe doping in Bi1/2(Na0.8K0.2)1/2TiO3 lead-free ceramics is reported. By introducing Fe3+, the ratio P r/P max shows a continuous increase, from 73.6% for the undoped sample to 80.8% for the sample doped with 3.0 mol.% Fe. The temperature corresponding to the pinching of polarization–electric field hysteresis loops is shifted toward higher temperature. The determined ferroelectric-to-relaxor transition temperature T F–R increases from 79°C to 111°C with Fe amount of 3.0 mol.%. Moreover, electron paramagnetic resonance spectroscopic analysis suggests the formation of \( \left( {{\hbox{Fe}}_{\rm{Ti}}^{\prime} - V_{\rm{O}}^{ \cdot \cdot } } \right)^{ \cdot } \) defect dipoles. The stabilization effect is thought to be related to the interaction between the defect dipole polarization and the spontaneous polarization. These results imply that Fe doping is an effective method to enhance the ferroelectric stability of Bi1/2Na1/2TiO3-based ceramics, which could be inspiring in developing novel lead-free materials with superior piezoelectric performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.R. Shrout and S.J. Zhang, J. Electroceram. 19, 111 (2007).

    Article  Google Scholar 

  2. J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659 (2015).

    Article  Google Scholar 

  3. C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J.S. Son, C.W. Ahn, and W. Jo, J. Materiomics 2, 1 (2016).

    Article  Google Scholar 

  4. Q. Xu, M. Chen, W. Chen, H.-X. Liu, B.-H. Kim, and B.-K. Ahn, Acta Mater. 56, 642 (2008).

    Article  Google Scholar 

  5. V.D.N. Tran, A. Ullah, T.H. Dinh, and J.-S. Lee, J. Electron. Mater. 45, 2639 (2016).

    Article  Google Scholar 

  6. J. Zhang, Z. Pan, F.-F. Guo, W.-C. Liu, H. Ning, Y.B. Chen, M.-H. Lu, B. Yang, J. Chen, S.-T. Zhang, X. Xing, J. Rödel, W. Cao, and Y.F. Chen, Nat. Commun. 6, 6615 (2015).

    Article  Google Scholar 

  7. K. Yoshii, Y. Hiruma, H. Nagata, and T. Takenaka, Jpn. J. Appl. Phys. 45, 4493 (2006).

    Article  Google Scholar 

  8. C. Ma, X. Tan, E. Dol’kin, and M. Roth, J. Appl. Phys. 108, 104105 (2010).

    Article  Google Scholar 

  9. W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.-J. Kleebe, A.J. Bell, and J. Rodel, J. Appl. Phys. 110, 074106 (2011).

    Article  Google Scholar 

  10. E. Aksel, J.S. Forrester, B. Kowalski, M. Deluca, D. Damjanovic, and J.L. Jones, Phys. Rev. B 85, 024121 (2012).

    Article  Google Scholar 

  11. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rödel, J. Electroceram. 29, 71 (2012).

    Article  Google Scholar 

  12. W. Jo, T. Granzow, E. Aulbach, J. Rödel, and D. Damjanovic, J. Appl. Phys. 105, 094102 (2009).

    Article  Google Scholar 

  13. H.-S. Han, W. Jo, J.-K. Kang, C.-W. Ahn, I.W. Kim, K.-K. Ahn, and J.-S. Lee, J. Appl. Phys. 113, 154102 (2013).

    Article  Google Scholar 

  14. K.-N. Pham, A. Hussain, C.W. Ahn, I.W. Kim, S.J. Jeong, and J.-S. Lee, Mater. Lett. 64, 2219 (2010).

    Article  Google Scholar 

  15. A. Hussain, C.W. Ahn, J.S. Lee, A. Ullah, and I.W. Kim, Sen. Actuators A 158, 84 (2010).

    Article  Google Scholar 

  16. A. Hussain, C.W. Ahn, A. Ullah, J.S. Lee, and I.W. Kim, Jpn. J. Appl. Phys. 49, 041504 (2010).

    Article  Google Scholar 

  17. R. Zuo, C. Ye, X. Fang, and J. Li, J. Eur. Ceram. Soc. 28, 871 (2008).

    Article  Google Scholar 

  18. A. Hussain, C.W. Ahn, A. Ullah, J.S. Lee, and I.W. Kim, Ceram. Int. 38, 4143 (2012).

    Article  Google Scholar 

  19. J. Hao, B. Shen, J. Zhai, C. Liu, X. Li, and X. Gao, J. Appl. Phys. 113, 114106 (2013).

    Article  Google Scholar 

  20. A. Ullah, C.W. Ahn, and I.W. Kim, Jpn. J. Appl. Phys. 51, 09MD07 (2012).

    Article  Google Scholar 

  21. R. Dittmer, W. Jo, J. Daniels, S. Schaab, and J. Rödel, J. Am. Ceram. Soc. 94, 4283 (2011).

    Article  Google Scholar 

  22. K. Wang, A. Hussain, W. Jo, and J. Rödel, J. Am. Ceram. Soc. 95, 2241 (2012).

    Article  Google Scholar 

  23. M.-K. Zhu, P.-X. Lu, Y.-D. Hou, X.-M. Song, H. Wang, and H. Yan, J. Am. Ceram. Soc. 89, 3739 (2006).

    Article  Google Scholar 

  24. K.P. Rema, V.K. Etacheri, and V. Kumar, J. Mater. Sci.: Mater. Electron. 21, 1149 (2010).

    Google Scholar 

  25. L. Zhang, W. Liu, W. Chen, X. Ren, J. Sun, E.A. Gurdal, S.O. Ural, and K. Uchino, Appl. Phys. Lett. 101, 242903 (2012).

    Article  Google Scholar 

  26. M.I. Morozov and D. Damjanovic, J. Appl. Phys. 104, 034107 (2008).

    Article  Google Scholar 

  27. E. Aksel, E. Erdem, P. Jakes, J.L. Jones, and R.-A. Eichel, Appl. Phys. Lett. 97, 2903 (2010).

    Article  Google Scholar 

  28. E. Sapper, R. Dittmer, D. Damjanovic, E. Erdem, D.J. Keeble, W. Jo, T. Granzow, and J. Rödel, J. Appl. Phys. 116, 104102 (2014).

    Article  Google Scholar 

  29. Y. Hiruma, R. Aoyagi, H. Nagata, and T. Takenaka, Jpn. J. Appl. Phys. 44, 5040 (2005).

    Article  Google Scholar 

  30. A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, Jpn. J. Appl. Phys. 38, 5564 (1999).

    Article  Google Scholar 

  31. R. Shannon, Acta Cryst. A 32, 751 (1976).

    Article  Google Scholar 

  32. H. Hu, M. Zhu, F. Xie, N. Lei, J. Chen, Y. Hou, and H. Yan, J. Am. Ceram. Soc. 92, 2039 (2009).

    Article  Google Scholar 

  33. H. Simons, J. Daniels, W. Jo, R. Dittmer, A. Studer, M. Avdeev, J. Rödel, and M. Hoffman, Appl. Phys. Lett. 98, 082901 (2011).

    Article  Google Scholar 

  34. H. Yan, F. Inam, G. Viola, H. Ning, H. Zhang, Q. Jiang, T. Zeng, Z. Gao, and M.J. Reece, J. Adv. Dielect. 1, 107 (2011).

    Article  Google Scholar 

  35. G. Viola, R. McKinnon, V. Koval, A. Adomkevicius, S. Dunn, and H. Yan, J. Phys. Chem. C 118, 8564 (2014).

    Article  Google Scholar 

  36. L. Jin, F. Li, and S. Zhang, J. Am. Ceram. Soc. 97, 1 (2014).

    Article  Google Scholar 

  37. H. Guo, X. Liu, F. Xue, L.-Q. Chen, W. Hong, and X. Tan, Phys. Rev. B 93, 174114 (2016).

    Article  Google Scholar 

  38. E.-M. Anton, W. Jo, D. Damjanovic, and J. Rödel, J. Appl. Phys. 110, 094108 (2011).

    Article  Google Scholar 

  39. W. Jo, E. Erdem, R.-A. Eichel, J. Glaum, T. Granzow, D. Damjanovic, and J. Rödel, J. Appl. Phys. 108, 014110 (2010).

    Article  Google Scholar 

  40. J. Yao, Y. Yang, N. Monsegue, Y. Li, J. Li, Q. Zhang, W. Ge, H. Luo, and D. Viehland, Appl. Phys. Lett. 98, 132903 (2011).

    Article  Google Scholar 

  41. L. Jin, R. Huo, R. Guo, F. Li, D. Wang, Y. Tian, Q. Hu, X. Wei, Z. He, Y. Yan, and G. Liu, ACS Appl. Mater. Interfaces. 8, 31109 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhou, J., Chen, W. et al. Stabilization of Ferroelectric Order in Bi1/2(Na0.8K0.2)1/2TiO3 Lead-Free Ceramics with Fe Doping. J. Electron. Mater. 46, 6167–6174 (2017). https://doi.org/10.1007/s11664-017-5656-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5656-9

Keywords

Navigation