Skip to main content
Log in

Investigating the Mobility of Trilayer Graphene Nanoribbon in Nanoscale FETs

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The aim of the present paper is to investigate the scaling behaviors of charge carrier mobility as one of the most remarkable characteristics for modeling of nanoscale field-effect transistors (FETs). Many research groups in academia and industry are contributing to the model development and experimental identification of multi-layer graphene FET-based devices. The approach in the present work is to provide an analytical model for carrier mobility of tri-layer graphene nanoribbon (TGN) FET. In order to do so, one starts by identifying the analytical modeling of TGN carrier velocity and ballistic conductance. At the end, a model of charge carrier mobility with numerical solution is analytically derived for TGN FET, in which the carrier concentration, temperature and channel length characteristics dependence are highlighted. Moreover, variation of band gap and gate voltage during the proposed device operation and its effect on carrier mobility is investigated. To evaluate the nanoscale FET performance, the carrier mobility model is also adopted to obtain the I–V characteristics of the device. In order to verify the accuracy of the proposed analytical model for TGN mobility, it is compared to the existing experimental data, and a satisfactory agreement is reported for analogous ambient conditions. Moreover, the proposed model is compared with the published data of single-layer graphene and bi-layer graphene, in which the obtained results demonstrate significant insights into the importance of charge carrier mobility impact in high-performance TGN FET. The work presented here is one step towards an applicable model for real-world nanoscale FETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 3 (2007).

    Article  Google Scholar 

  2. G.I. Zebrev, Micro Nanoelectron. 7025, 70250M (2008).

    Google Scholar 

  3. M. Dragoman and D. Dragoman, Quantum Electron. 33, 6 (2009).

    Google Scholar 

  4. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  Google Scholar 

  5. M. Terronesa, A. Botello-Méndezb, and J.C. Delgadoc, Nano Today 5, 4 (2010).

    Article  Google Scholar 

  6. B.F. Damon, C. Hsin-Ying, L. Yu-Ming, A.J. Keith, X. Fengnian, and A. Phaedon, Nano Lett. 9, 12 (2009).

    Article  Google Scholar 

  7. H. Shu-Jen, C. Zhihong, A.B. Ageeth, and S. Yanning, IEEE Electron Device Lett. 32, 6 (2011).

    Article  Google Scholar 

  8. A.A. Avetisyan, B. Partoens, and F.M. Peeters, Phys. Rev. B 81, 115432 (2010).

    Article  Google Scholar 

  9. J. Hass, W.A. de Heer, and E.H. Conrad, J. Phys.: Condens. Matter 20, 32 (2008).

    Google Scholar 

  10. M. Koshino and E. McCann, Phys. Rev. B 8, 115315 (2010).

    Article  Google Scholar 

  11. U. Roberto, D. Dinh Loc, S. Patrick, B. Marko, and K. Klaus, Nano Lett. 16, 11 (2016).

    Google Scholar 

  12. M.F.S. Khan and A.B. Alexander, Solid State Commun. 152, 15 (2012).

    Google Scholar 

  13. P.H. Tan, W.P. Han, W.J. Zhao, Z.H. Wu, K. Chang, H. Wang, Y.F. Wang, N. Bonini, N. Marzari, G. Savini, A. Lombardo, and A.C. Ferrari, Nat. Mater. 11, 10.1038 (2012).

    Article  Google Scholar 

  14. M. Hajlaoui, H. Sediri, D. Pierucci, H. Henck, T. Phuphachong, M.G. Silly, L.A. Vaulchier, F. Sirotti, Y. Guldner, R. Belkhou, and A. Ouerghi, Sci. Rep. 6, 18791 (2016).

    Article  Google Scholar 

  15. C. Cong, K. Li, X.X. Zhang, and T. Yu, Sci. Rep. 3, 1195 (2013).

    Article  Google Scholar 

  16. G. Xu, C.M. Torres, J. Tang, J. Bai, E.B. Song, Y. Huang, X. Duan, Y. Zhang, and K.L. Wang, Nano Lett. 11, 1082 (2011).

    Article  Google Scholar 

  17. D. Pierucci, T. Brumme, J.C. Girard, M. Calandra, M.G. Silly, F. Sirotti, A. Barbier, F. Mauri, and A. Ouerghi, Sci. Rep. 6, 33487 (2016).

    Article  Google Scholar 

  18. M. Koshino, Phys. Rev. B 81, 125304 (2010).

    Article  Google Scholar 

  19. F. Zhang, B. Sahu, H. Min, and A.H. MacDonald, Phys. Rev. B 82, 035409 (2010).

    Article  Google Scholar 

  20. M. Rahmani, R. Ismail, M.T. Ahmadi, M.J. Kiani, and K. Rahmani, Science of Advanced Materials 6, 4 (2014).

    Article  Google Scholar 

  21. V.K. Arora, Microelectron. J. 31, 11 (2000).

    Article  Google Scholar 

  22. N.A. Amin, M.T. Ahmadi, Z. Johari, M. Mousavi, and R. Ismail, Mod. Phys. Lett. B 25, 739 (2011).

    Article  Google Scholar 

  23. M. Rahmani, R. Ismail, M.T. Ahmadi, and M.H. Ghadiry, J. Exp. Nanosci. 9, 1 (2013).

    Google Scholar 

  24. H. Sadeghi, M.T. Ahmadi, M. Mousavi, and R. Ismail, Mod. Phys. Lett. B 26, 1250047 (2012).

    Article  Google Scholar 

  25. M. Rahmani, M.T. Ahmadi, F.A. Karimi, M. Saeidmanesh, E. Akbari, and R. Ismail, Nanoscale Res. Lett. 8, 55 (2013).

    Article  Google Scholar 

  26. M. Rahmani, M.T. Ahmadi, M.H. Ghadiry, S. Anwar, and R. Ismail, J. Comput. Theor. Nanosci. 9, 10 (2012).

    Article  Google Scholar 

  27. N.A. Amin, M.T. Ahmadi, Z. Johari, and R. Ismail, Mod. Phys. Lett. B 25, 4 (2011).

    Google Scholar 

  28. D.A. Neamen, Semiconductor Physics and Devices (New York, NY: McGraw-Hill, 2003).

    Google Scholar 

  29. F. Tseng and A.W. Ghosh, Mesoscale and Nanoscale Physics (Cornell university, 2010). arXiv:1003.4551v3.

  30. E.D. Vincent, B. Myung-Ho, and P. Eric, Appl. Phys. Lett. 97, 8 (2010).

    Article  Google Scholar 

  31. A. Venugopal, J. Chan, X. Li, C.W. Magnuson, W.P. Kirk, L. Colombo, R.S. Ruoff, and E.M. Vogel, J. Appl. Phys. 109, 10 (2011).

    Article  Google Scholar 

  32. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press, 2012).

    Google Scholar 

  33. L. Zhang, Y. Zhang, J. Camacho, M. Khodas, and I. Zaliznyak, Nat. Phys. 7, 953–957 (2011).

    Article  Google Scholar 

  34. F. Tseng and A.W. Ghosh, Mesoscale and Nanoscale Physics 3, 22904 (2010).

    Google Scholar 

  35. M. Rahmani, M.T. Ahmadi, F.A. Karimi, M.J. Kiani, E. Akbari, and R. Ismail, Sens. Lett. 11, 2 (2013).

    Article  Google Scholar 

  36. M.T. Ahmadi, M. Rahmani, M.H. Ghadiry, and R. Ismail, Sci. Adv. Mater. 4, 7 (2012).

    Article  Google Scholar 

  37. A.H. Pourasl, M.T. Ahmadi, M. Rahmani, H.C. Chin, C.S. Lim, R. Ismail, and L.P. Michael, Nanoscale Res. Lett. 9, 33 (2014).

    Article  Google Scholar 

  38. M.J. Kiani, M.T. Ahmadi, H. Karimi, M. Rahmani, A. Hashim, and F.K. Che, Harun. Nanoscale Res. Lett. 8, 1 (2013).

    Article  Google Scholar 

  39. H. Karimi, M.T. Ahmadi, R. Yousof, M. Saeidmanesh, M. Rahmani, M.J. Kiani, and M.H. Ghadiry, Sci. Adv. Mater. 6, 3 (2014).

    Google Scholar 

  40. M. Hassanzadazar, M.T. Ahmadi, R. Ismail, and H. Goudarzi, J. Electron. Mater. 45, 5404 (2016).

    Article  Google Scholar 

  41. V. Khadem Hosseini, M.T. Ahmadi, S. Afrang, and R. Ismail, J. Electron. Mater. (2017). doi:10.1007/s11664-017-5354-7.

    Google Scholar 

  42. M.T. Ahamdi, R. Ismail, and S. Anwar, Handbook of Research on Nanoelectronic Sensor Modeling and Applications (IGI Global, 2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Ghafoori Fard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, M., Ghafoori Fard, H., Ahmadi, .T. et al. Investigating the Mobility of Trilayer Graphene Nanoribbon in Nanoscale FETs. J. Electron. Mater. 46, 6188–6194 (2017). https://doi.org/10.1007/s11664-017-5651-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5651-1

Keywords

Navigation