Skip to main content
Log in

Nano-Crystalline Thermally Evaporated Bi2Se3 Thin Films Synthesized from Mechanically Milled Powder

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Bi2Se3 powder has been successfully synthesized via mechanical ball milling of bismuth and selenium as starting materials. X-ray diffraction characterization revealed the formation of the rhombohedral and orthorhombic phases of Bi2Se3 material belonging to systems with space groups \( {\hbox{R}}\bar{3}{\hbox{m}}\) and Pbnm, respectively. The advantageous last finding is confirmed by the Rietveld refinement of the x-ray diffraction data. Furthermore, the analysis of the x-ray data of thermally deposited thin films revealed that both orthorhombic and rhombohedral phases are coexisting in the layer. The morphology of the ball milled powder was studied by scanning electron microscopy. The phase formation of the material is confirmed by Raman spectroscopy. M–H (Magnetization versus Magnetic field) curve indicates that Bi2Se3 powder has a ferromagnetic behavior. Additionally, absorbance and transmittance measurements were carried out on the obtained thermally evaporated thin films and yielded a band gap of 1.33 eV supporting the potential application of the heterogeneous rhombohedral/orthorhombic Bi2Se3 material in photovoltaics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kadel, L. Kumari, W.Z. Li, J.Y. Huang, and P.P. Provencio, Nanoscale Res. Lett. 6, 1 (2011).

    Google Scholar 

  2. X. Qiu, L.N. Austin, P.A. Muscarella, J.S. Dyck, and C. Burda, Angew. Chem. Int. Ed. 45, 5656 (2006).

    Article  Google Scholar 

  3. T.J. Hendricks and N.K. Karri, J. Electron. Mater. 38, 1257 (2009).

    Article  Google Scholar 

  4. L.D. Ivanova, L.I. Petrova, Y.V. Granatkina, V.S. Zemskov, O.B. Sokolov, S.Y. Skipidarov, and N.I. Duvankov, Inorg. Mater. 45, 123 (2009).

    Article  Google Scholar 

  5. A. Pertsova and C.M. Canali, New J. Phys. 16, 63022 (2014).

    Article  Google Scholar 

  6. M.Z. Hasan and C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  Google Scholar 

  7. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Article  Google Scholar 

  8. S. Nakajima, J. Phys. Chem. Solids 24, 479 (1936).

    Article  Google Scholar 

  9. X. Qiu, C. Burda, R. Fu, L. Pu, H. Chen, and J. Zhu, J. Am. Chem. Soc. 126, 16276 (2004).

    Article  Google Scholar 

  10. Y. Jiang, Y.-J. Zhu, and G.-F. Cheng, Cryst. Growth Des. 6, 2174 (2006).

    Article  Google Scholar 

  11. R.K. Nkum, A.A. Adimado, and H. Totoe, Mater. Sci. Eng. B 55, 102 (1998).

    Article  Google Scholar 

  12. M. Achimovičová, F.J. Gotor, C. Real, and N. Daneu, J. Mater. Sci. Mater. Electron. 23, 1844 (2012).

    Article  Google Scholar 

  13. B. Pejova, I. Grozdanov, and A. Tanuševski, Mater. Chem. Phys. 83, 245 (2004).

    Article  Google Scholar 

  14. C. Xiao, J. Yang, W. Zhu, J. Peng, and J. Zhang, Electrochim. Acta 54, 6821 (2009).

    Article  Google Scholar 

  15. B.R. Sankapal, R.S. Mane, and C.D. Lokhande, Mater. Chem. Phys. 63, 230 (2000).

    Article  Google Scholar 

  16. N. Sakai, T. Kajiwara, K. Takemura, S. Minomura, and Y. Fujii, Solid State Commun. 40, 1045 (1981).

    Article  Google Scholar 

  17. N.S. Yesugade, C.D. Lokhande, and C.H. Bhosale, Thin Solid Films 263, 145 (1995).

    Article  Google Scholar 

  18. J.A. Woollam, H.A. Beale, and I.L. Spain, Rev. Sci. Instrum. 44, 434 (1973).

    Article  Google Scholar 

  19. A.P. Torane and C.H. Bhosale, Mater. Res. Bull. 36, 1915 (2001).

    Article  Google Scholar 

  20. A.P. Torane, C.D. Lokhande, P.S. Patil, and C.H. Bhosale, Mater. Chem. Phys. 55, 51 (1998).

    Article  Google Scholar 

  21. W. Wang, Y. Geng, Y. Qian, Y. Xie, and X. Liu, Mater. Res. Bull. 34, 131 (1999).

    Article  Google Scholar 

  22. D. Nataraj, K. Prabakar, S.K. Narayandass, and D. Mangalaraj, Cryst. Res. Technol. 35, 1087 (2000).

    Article  Google Scholar 

  23. K.J. John, B. Pradeep, and E. Mathai, Solid State Commun. 85, 879 (1993).

    Article  Google Scholar 

  24. J. Waters, D. Crouch, P. O’brien, and J.-H. Park, J. Mater. Sci. Mater. Electron. 14, 599 (2003).

    Article  Google Scholar 

  25. S. Augustine, J. Ravi, S. Ampili, T.M.A. Rasheed, K.P.R. Nair, T. Endo, and E. Mathai, J. Phys. Appl. Phys. 36, 994 (2003).

    Article  Google Scholar 

  26. S. Augustine, S. Ampili, J.K. Kang, and E. Mathai, Mater. Res. Bull. 40, 1314 (2005).

    Article  Google Scholar 

  27. G. Zhang, H. Qin, J. Teng, J. Guo, Q. Guo, X. Dai, Z. Fang, and K. Wu, App. Phys. Lett. 95, 053114 (2009).

    Article  Google Scholar 

  28. J. Androulakis and E. Beciragic, Solid State Commun. 173, 5 (2013).

    Article  Google Scholar 

  29. C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001).

    Article  Google Scholar 

  30. M.S. El-Eskandarany, Mechanical alloying: for fabrication of advanced engineering materials, 1st ed. (New York: William Andrew, 2001), pp. 142–146.

    Book  Google Scholar 

  31. M. Zakeri, R. Yazdani-Rad, M.H. Enayati, and M.R. Rahimipoor, Mater. Sci. Eng. A 430, 185 (2006).

    Article  Google Scholar 

  32. L. Lutterotti, C. Maud, Newsletter, (IUCr) No. 24. December, 2000.

  33. H.M. Rietveld, Acta Crystallogr. 22, 151 (1967).

    Article  Google Scholar 

  34. G.L. Destri, A. Marrazzo, A. Rescifina, and F. Punzo, J. Pharm. Sci. 100, 4896 (2011).

    Article  Google Scholar 

  35. L. Shanke, L. He, and L. Jianming, Period. Mineral. 1, 121 (2014).

    Google Scholar 

  36. L.S. Hamideche, A. Amara, M. Mekhnache, O. Kamli, A. Benaldjia, A. Drici, J.C. Bernede, M. Guerioune, N. Benslim, and L. Bechiri, Mater. Sci. Semicond. Process. 15, 145 (2012).

    Article  Google Scholar 

  37. B. Ghosh and S.K. Pradhan, J. Nanopart. Res. 13, 2343 (2011).

    Article  Google Scholar 

  38. R.W.G. Wyckoff and R.W. Wyckoff, Crystal structures, 2nd ed. (New York: Interscience, 1960), p. 455.

    Google Scholar 

  39. A.M. Abeykoon, H. Hu, L. Wu, Y. Zhu, and S.J. Billinge, J. Appl. Crystallogr. 48, 244 (2015).

    Article  Google Scholar 

  40. X. Chen, H.D. Zhou, A. Kiswandhi, I. Miotkowski, Y.P. Chen, P.A. Sharma, A.L. Sharma, M.A. Hekmaty, D. Smirnov, and Z. Jiang, Appl. Phys. Lett. 99, 261912 (2011).

    Article  Google Scholar 

  41. E.Y. Atabaeva, S.A. Mashkov, and S.V. Popova, Kristallografiya 18, 173 (1973).

    Google Scholar 

  42. E.Y. Atabaeva, B. Na, and S.V. Popova, Fiz. Tverd. Tela 15, 3508 (1973).

    Google Scholar 

  43. J. Zhao, H. Liu, L. Ehm, D. Dong, Z. Chen, and G. Gu, J. Phys. Condens. Matter 25, 125602 (2013).

    Article  Google Scholar 

  44. N.W. Tideswell, F.H. Kruse, and J.D. McCullough, Acta Crystallogr. 10, 99 (1957).

    Article  Google Scholar 

  45. S. Šćavničar, Z. Für Krist. Cryst. Mater. 114, 85 (1960).

    Google Scholar 

  46. V. Kupčik and L. Veselá-Nováková, Tschermaks Mineral. Petrogr. Mitteilungen. 14, 55 (1970).

    Article  Google Scholar 

  47. X. Li, K. Cai, H. Li, L. Wang, and C. Zhou, Int. J. Miner. Metall. Mater. 17, 104 (2010).

    Article  Google Scholar 

  48. N. Mntungwa, P.V. Rajasekhar, K. Ramasamy, and N. Revaprasadu, Superlattices Microstruct. 69, 226 (2014).

    Article  Google Scholar 

  49. M.S. Dresselhaus, Y.-M. Lin, S.B. Cronin, O. Rabin, M.R. Black, G. Dresselhaus, and T. Koga, Semicond. Semimet. 71, 1 (2001).

    Article  Google Scholar 

  50. Y.M. Lin and M.S. Dresselhaus, Phys. Rev. B. 68, 75304 (2003).

    Article  Google Scholar 

  51. J. Tauc, Amorphous and liquid semiconductors, ed. J. Tauc (New york: Plenum, 1974), p. 159.

    Chapter  Google Scholar 

  52. J.I. Pankove, Optical processes in semiconductors, 1st ed. (New Jersey: Prentice-Hall, 1971), pp. 34–81.

    Google Scholar 

  53. A.H. Clark and C.D. Tuffnell, Int. J. Pept. Protein Res. 16, 339 (1980).

    Article  Google Scholar 

  54. V.M. Garcia, M.T.S. Nair, P.K. Nair, and R.A. Zingaro, Semicond. Sci. Technol. 12, 645 (1997).

    Article  Google Scholar 

  55. M. Liu, F.Y. Liu, B.Y. Man, D. Bi, and X.Y. Xu, Appl. Surf. Sci. 317, 257 (2014).

    Article  Google Scholar 

  56. A. Amara, W. Rezaiki, A. Ferdi, A. Hendaoui, A. Drici, M. Guerioune, J.C. Bernède, and M. Morsli, Phys. Status Solidi A 204, 1138 (2007).

    Article  Google Scholar 

  57. A. Amara, W. Rezaiki, A. Ferdi, A. Hendaoui, A. Drici, M. Guerioune, J.C. Bernède, and M. Morsli, Sol. Energy Mater. Sol. Cells 9, 1916 (2007).

    Article  Google Scholar 

  58. A. Amara, A. Ferdi, A. Drici, J.C. Bernède, M. Morsli, and M. Guerioune, Catal. Today 113, 251 (2006).

    Article  Google Scholar 

  59. A. Amara, A. Drici, and M. Guerioune, Phys. Status Solidi A 195, 405 (2003).

    Article  Google Scholar 

  60. D. Li, Y. Wu, R. Fan, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 3186 (2003).

    Article  Google Scholar 

  61. S.K. Mishra, S. Satpathy, and O. Jepsen, J. Phys. Condens. Matter 9, 461 (1997).

    Article  Google Scholar 

  62. H. Köhler and C.R. Becker, Phys. Status Solidi B 61, 533 (1974).

    Article  Google Scholar 

  63. W. Richter and C.R. Becker, Phys. Status Solidi B 84, 619 (1977).

    Article  Google Scholar 

  64. Y. Kim, X. Chen, Z. Wang, J. Shi, I. Miotkowski, Y.P. Chen, P.A. Sharma, A.L. Sharma, M.A. Hekmaty, and Z. Jiang, et’al., Appl. Phys. Lett. 100, 71907 (2012).

    Article  Google Scholar 

  65. R. Vilaplana, D. Santamaría-Pérez, O. Gomis, F.J. Manjón, J. González, A. Segura, A. Muñoz, P. Rodríguez-Hernández, E. Pérez-González, and V. Marín-Borrás et’al., Phys. Rev. B. 84, 184110 (2011).

    Article  Google Scholar 

  66. O. Gomis, R. Vilaplana, F.J. Manjón, P. Rodríguez-Hernández, E. Pérez-González, A. Munoz, V. Kucek, and C. Drasar, Phys. Rev. B. 84, 174305 (2011).

    Article  Google Scholar 

  67. S.Y.F. Zhao, C. Beekman, L.J. Sandilands, J.E.J. Bashucky, D. Kwok, N. Lee, A.D. LaForge, S.W. Cheong, and K.S. Burch, Appl. Phys. Lett. 98, 141911 (2011).

    Article  Google Scholar 

  68. Y.D. Glinka, S. Babakiray, T.A. Johnson, and D. Lederman, J. Phys. Condens. Matter 27, 52203 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Abdelkader.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amara, A., Abdennouri, N., Drici, A. et al. Nano-Crystalline Thermally Evaporated Bi2Se3 Thin Films Synthesized from Mechanically Milled Powder. J. Electron. Mater. 46, 4917–4923 (2017). https://doi.org/10.1007/s11664-017-5496-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5496-7

Keywords

Navigation