Skip to main content
Log in

Synthesis, Characterization, and Photocatalytic Behavior of Praseodymium Carbonate and Oxide Nanoparticles Obtained by Optimized Precipitation and Thermal Decomposition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Direct precipitation of insoluble praseodymium carbonate salt by reaction of the corresponding cation and anion was utilized in this study. This facile, routine, and effective route was optimized statistically through an orthogonal array design for fabrication of nanoparticles, using a Taguchi method to quantitatively evaluate the effects of the major operation conditions on the particle diameter via analysis of variance. The results indicated that high-purity particles with very small dimension (30 nm) could be produced simply by regulating the cation and anion concentrations and flow rate of introducing the cation into the anion solution. The product was thermally decomposed to yield praseodymium oxide nanoparticles by single-stage reaction. Both products were characterized using various conventional techniques including x-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, and ultraviolet–visible diffuse reflectance spectroscopy to monitor the effects of the optimization on their physicochemical properties. Furthermore, the photocatalytic behavior of the nanoparticles was evaluated for treatment of water polluted with methyl orange, revealing high efficiency for degradation of the organic pollutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, Z. Rezvani, K. Adib, and M.R. Ganjali, Mater. Manuf. Process. 34, 30 (2015).

    Google Scholar 

  2. K. Adib, M. Rahimi-Nasrabadi, Z. Rezvani, S.M. Pourmortazavi, F. Ahmadi, H.R. Naderi, and M.R. Ganjali, J. Mater. Sci. Mater. Electron. 4541, 27 (2016).

    Google Scholar 

  3. M. Esmaili and A. Habibi-Yangjeh, Phys. Status Solidi A 2529, 206 (2009).

    Google Scholar 

  4. S. Ramezani, A. Ghazitabar, and S.K. Sadrnezhaad, J. Iran. Chem. Soc. 2069, 13 (2016).

    Google Scholar 

  5. M. Shamshi Hassan, M. Shaheer Akhtar, K.-B. Shim, and O.-B. Yang, Nanoscale Res. Lett. 735, 5 (2010).

    Google Scholar 

  6. P. Šulcova, J. Therm. Anal. Calorim. 51, 82 (2005).

    Google Scholar 

  7. W. Wang, P. Lin, Y. Fu, and G. Cao, Catal. Lett. 19, 82 (2002).

    Google Scholar 

  8. X. Wang, J. Zhuang, and Y.D. Li, Eur. J. Inorg. Chem. 946, 5 (2004).

    Google Scholar 

  9. P.X. Huang, F. Wu, B.L. Zhu, G.R. Li, Y.L. Wang, X.P. Gao, H.Y. Zhu, T.Y. Yan, W.P. Huang, S.M. Zhang, and D.Y. Song, J. Phys. Chem. B 1614, 110 (2006).

    Google Scholar 

  10. H.J. Osten, J.P. Liu, P. Gaworzewski, E. Bugiel, P. Zaumseil, IEEE IEDM Tech. Dig. (2000), pp. 653–656.

  11. S. Shrestha, C.M.Y. Yeung, C. Nunnerley, and S.C. Tsang, Sens. Actuators A 191, 136 (2007).

    Google Scholar 

  12. H.J. Mussig, J. Dabrowski, K. Ignatovich, J.P. Liu, V. Zavodin-sky, and H.J. Osten, Surf. Sci. 159, 504 (2002).

    Google Scholar 

  13. S.C. Tsang and C. Bulpitt, Sens. Actuators B 226, 52 (1998).

    Google Scholar 

  14. C.F. Qiu, H.Y. Chen, Z.L. Xie, M. Wong, and H.S. Kwok, Appl. Phys. Lett. 3485, 80 (2002).

    Google Scholar 

  15. K. Asami, K.-I. Kusakabe, N. Ashi, and Y. Ohtsuka, Appl. Catal. A 43, 156 (1997).

    Google Scholar 

  16. S. Bernal, F.J. Botana, G. Cifredo, J.J. Calvino, A. Jobacho, and J.M. Rodriguez-Izquierdo, J. Alloys Compd. 180, 271 (1992).

    Article  Google Scholar 

  17. U. Chon, J.S. Shim, and H.M. Jang, J. Appl. Phys. 4769, 93 (2003).

    Google Scholar 

  18. M. Popa and M. Kakihana, Solid State Ionics 265, 141–142 (2001).

    Google Scholar 

  19. M. Shamshi Hassan, Y.-S. Kang, B.-S. Kim, I.-S. Kim, H.-Y. Kim, and M.-S. Khil, Superlattices Microstruct. 50, 139–144 (2011).

    Article  Google Scholar 

  20. M. Shamshi Hassan, M. Shaheer Akhtar, K.-B. Shim, and O.-B. Yang, Nanoscale Res. Lett. 735, 5 (2010).

    Google Scholar 

  21. Y. Borchert, P. Sonström, M. Wilhelm, H. Borchert, and M. Bäumer, J. Phys. Chem. C 3054, 112 (2008).

    Google Scholar 

  22. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, A.R. Banan, and F. Ahmadi, J. Mol. Struct. 85, 1074 (2014).

    Google Scholar 

  23. R.K. Roy, A Primer on the Taguchi Method (New York: Van Nostrand Reinhold, 1990).

    Google Scholar 

  24. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, S.S. Hajimirsadeghi, and M.M. Zahedi, J. Mol. Struct. 31, 1047 (2013).

    Google Scholar 

  25. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, A.A. Davoudi-Dehaghani, S.S. Hajimirsadeghi, and M.M. Zahedi, CrystEngComm 4077, 15 (2013).

    Google Scholar 

  26. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M. Khalilian-Shalamzari, S.S. Hajimirsadeghi, and M.M. Zahedi, Cent. Eur. J. Chem. 1393, 11 (2013).

    Google Scholar 

  27. S.M. Pourmortazavi, M. Rahimi-Nasrabadi, M. Khalilian-Shalamzari, H.R. Ghaeni, and S.S. Hajimirsadeghi, J. Inorg. Organomet. Polym. Mater. 333, 24 (2014).

    Google Scholar 

  28. S.M. Pourmortazavi, M. Rahimi-Nasrabadi, and S.S. Hajimirsadeghi, J. Disper. Sci. Technol. 254, 33 (2012).

    Google Scholar 

  29. Y. Fazli, S.M. Pourmortazavi, I. Kohsari, M. Sadeghpour Karimi, and M. Tajdari, J. Mater. Sci. Mater. Electron. 7192, 27 (2016).

    Google Scholar 

  30. Y. Bayat, S.M. Pourmortazavi, H. Ahadi, and H. Iravani, Chem. Eng. J. 432, 230 (2013).

    Google Scholar 

  31. S.M. Pourmortazavi, M. Taghdiri, V. Makari, and M. Rahimi-Nasrabadi, Spectrochim. Acta Mol. Biomol. Spectrosc. 1249, 136 (2015).

    Google Scholar 

  32. P.J. Ross, Taguchi Techniques for Quality Engineering (New York: McGraw-Hill, 1988).

    Google Scholar 

  33. M. Shamsipur, S.M. Pourmortazavi, S.S. Hajimirsadeghi, and M. Roushani, Colloids Surf. A 35, 423 (2013).

    Google Scholar 

  34. M. Pirhashemi and A. Habibi-Yangjeh, J. Colloid Interface Sci. 103, 474 (2016).

    Google Scholar 

  35. G. Wang, H. Wang, J. Bai, Z. Ren, and J. Bai, Chem. Eng. J. 386, 214 (2013).

    Google Scholar 

  36. X. Shang, W. Lu, B. Yue, L. Zhang, J. Ni, Y. Lv, and Y. Feng, Cryst. Growth Des. 1415, 9 (2009).

    Google Scholar 

  37. B. Klingenberg and M.A. Vannice, Chem. Mater. 2755, 8 (1996).

    Google Scholar 

  38. M. Rahimi-Nasarabadi, F. Ahmadi, S. Hamdi, N. Eslami, K. Didehban, and M.R. Ganjali, J. Mol. Liq. 216, 814 (2016).

    Article  Google Scholar 

  39. T. Yu, X. Tan, L. Zhao, Y. Yin, P. Chen, and J. Wei, Chem. Eng. J. 86, 157 (2010).

    Google Scholar 

  40. G.K. Castello, Handbook of Photocatalysts: Preparation, Structure and Applications (New York: Nova Science, 2010).

    Google Scholar 

  41. M. Farbod and M. Kajbafvala, Powder Tech. 434, 239 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seied Mahdi Pourmortazavi or Mehdi Rahimi-Nasrabadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmortazavi, S.M., Rahimi-Nasrabadi, M., Aghazadeh, M. et al. Synthesis, Characterization, and Photocatalytic Behavior of Praseodymium Carbonate and Oxide Nanoparticles Obtained by Optimized Precipitation and Thermal Decomposition. J. Electron. Mater. 46, 4627–4639 (2017). https://doi.org/10.1007/s11664-017-5458-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5458-0

Keywords

Navigation