Skip to main content
Log in

Density Functional Study on A-Units Based on Thieno[3,4-c]pyrrole-4,6-dione for Organic Solar Cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The use of polymer donor materials has allowed great progress in organic solar cells. To search for potential donor materials, we have designed a series of donor–acceptor (D–A)-type alternating polymers composed of dithieno[3,2-b:2′,3′-d]pyrrole (DTP) electron-rich units and thieno[3,4-c]pyrrole-4,6-dione (TPD) electron-deficient units. Their electronic and optical properties have been investigated using density functional theory and Marcus theory. The calculation results demonstrate that introduction of cyclic compounds (furyl, thienyl, and phenyl) into electron-deficient units of the molecules can result in lower highest occupied molecular orbital (HOMO) levels and reorganization energies compared with the experimental molecule (X 0 ). To investigate the effects of electron-withdrawing units, three electron-withdrawing substituents (–OCH3, –F, and –CN) were introduced into the thienyl. The results indicated that the polymer X 2–3 will show the best performance among the designed polymers, offering low-lying HOMO energy level (−5.47 eV), narrow energy gap (1.97 eV), and high hole mobility (7.45 × 10−2 cm2 V−1 s−1). This work may provide a guideline for the design of efficient D–A polymers for organic solar cells with enhanced performance.

Graphical Abstract

Donor–acceptor (D–A) unit polymers have been extensively investigated by researchers as donor materials. However, most such work has focused on donor units, while the work presented herein outlines an effective way to modulate the properties of acceptor units based on thieno[3,4-c]pyrrole-4,6-dione in D–A polymers. The results show that incorporation of a thienyl substituent and bonding –CN (X 2–3 ) as acceptor moiety in D–A-type polymers is an efficient strategy to improve the absorption and mobility (μ h = 7.45 × 10−2 cm2 V−1 s−1) and thus enhance the photovoltaic performance (PCE ≈ 5.82%) of organic solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.F. Service, Science (Washington, DC) 309, 548 (2005).

  2. J. Potočnik, Science 315, 810 (2007).

    Article  Google Scholar 

  3. G. Yu, J. Gao, J. Hummelen, F. Wudl, and A. Heeger, Sci. AAAS Wkly. Pap. Edit. 270, 1789 (1995).

    Google Scholar 

  4. H. Sirringhaus, N. Tessler, and R.H. Friend, Science 280, 1741 (1998).

    Article  Google Scholar 

  5. Y.-J. Cheng, S.-H. Yang, and C.-S. Hsu, Chem. Rev. 109, 5868 (2009).

    Article  Google Scholar 

  6. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nat. Photonics 6, 591 (2012).

    Google Scholar 

  7. W. Yu, L. Huang, D. Yang, P. Fu, L. Zhou, J. Zhang, and C. Li, J. Mater. Chem. A 3, 10660 (2015).

  8. W. Li, K.H. Hendriks, A. Furlan, M.M. Wienk, and R.A. Janssen, J. Am. Chem. Soc. 137, 2231 (2015).

    Article  Google Scholar 

  9. J.-S. Wu, S.-W. Cheng, Y.-J. Cheng, and C.-S. Hsu, Chem. Soc. Rev. 44, 1113 (2015)

  10. K.M. Coakley and M.D. McGehee, Chem. Mater. 16, 4533 (2004).

    Article  Google Scholar 

  11. V. Lemaur, M. Steel, D. Beljonne, J.-L. Brédas, and J. Cornil, J. Am. Chem. Soc. 127, 6077 (2005).

    Article  Google Scholar 

  12. Y. Li, Acc. Chem. Res. 45, 723 (2012).

    Article  Google Scholar 

  13. J. Brédas and A. Heeger, Chem. Phys. Lett. 217, 507 (1994).

    Article  Google Scholar 

  14. M. Svensson, F. Zhang, S.C. Veenstra, W.J. Verhees, J.C. Hummelen, J.M. Kroon, O. Inganäs, and M.R. Andersson, Adv. Mater. 15, 988 (2003).

    Article  Google Scholar 

  15. Y.-C. Chen, C.-Y. Yu, Y.-L. Fan, L.-I. Hung, C.-P. Chen, and C. Ting, Chem. Commun. 46, 6503 (2010).

    Article  Google Scholar 

  16. Y. Zhang, J. Zou, H.-L. Yip, K.-S. Chen, J.A. Davies, Y. Sun, and A.K.-Y. Jen, Macromolecules 44, 4752 (2011).

    Article  Google Scholar 

  17. E. Zhou, J. Cong, K. Tajima, C. Yang, and K. Hashimoto, Macromol. Chem. Phys. 212, 305 (2011).

    Article  Google Scholar 

  18. Y. Zhang, J. Zou, H.-L. Yip, Y. Sun, J.A. Davies, K.-S. Chen, O. Acton, and A.K.-Y. Jen, J. Mater. Chem. 21, 3895 (2011).

    Article  Google Scholar 

  19. M. Shi, L. Fu, X. Hu, L. Zuo, D. Deng, J. Chen, and H. Chen, Polym. Bull. 68, 1867 (2012).

    Article  Google Scholar 

  20. W. Yue, T.T. Larsen-Olsen, X. Hu, M. Shi, H. Chen, M. Hinge, P. Fojan, F.C. Krebs, and D. Yu, J. Mater. Chem. A 1, 1785 (2013).

    Article  Google Scholar 

  21. J. Warnan, A. El Labban, C.M. Cabanetos, E.T. Hoke, P.K. Shukla, C. Risko, J.-L. Brédas, M.D. McGehee, and P.M. Beaujuge, Chem. Mater. 26, 2299 (2014).

    Article  Google Scholar 

  22. L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li, and J. Hou, Angew. Chem. 123, 9871 (2011).

    Article  Google Scholar 

  23. M. Zhang, X. Guo, S. Zhang, and J. Hou, Adv. Mater. 26, 1118 (2014).

    Article  Google Scholar 

  24. L. Ye, S. Zhang, L. Huo, M. Zhang, and J. Hou, Acc. Chem. Res. 47, 1595 (2014).

    Article  Google Scholar 

  25. L. Ye, S. Zhang, L. Huo, M. Zhang, and J. Hou, Acc. Chem. Res. 47, 1595 (2014).

    Article  Google Scholar 

  26. J.D. Patterson, Ann. Nucl. Energy 16, 611 (1989).

  27. A.K. Dhara and S.K. Ghosh, Phys. Rev. Lett. 52, 997 (1987).

    Google Scholar 

  28. J. Ku, Y. Lansac, and H.J. Yun, J. Phys. Chem. C 115, 21508 (2011).

    Article  Google Scholar 

  29. C. Adamo, J. Chem. Phys. 110, 6158 (1999).

    Article  Google Scholar 

  30. S.L. Mayo, B.D. Olafson, and W.A. Goddard, J. Phys. Chem. 94, 8897 (1990).

    Article  Google Scholar 

  31. K. Srinivas, C.R. Kumar, M.A. Reddy, K. Bhanuprakash, V.J. Rao, and L. Giribabu, Synth. Met. 161, 96 (2011).

    Article  Google Scholar 

  32. W.M. Hoe, A.J. Cohen, and N.C. Handy, Chem. Phys. Lett. 341, 319 (2001).

    Article  Google Scholar 

  33. S. Tang and J. Zhang, J. Phys. Chem. A 115, 5184 (2011).

    Article  Google Scholar 

  34. B.C. Lin, C.P. Cheng, and Z.P.M. Lao, J. Phys. Chem. A 107, 5241 (2003).

    Article  Google Scholar 

  35. Y.K. Lan, C.H. Yang, and H.C. Yang, Polym. Int. 59, 16 (2010).

    Article  Google Scholar 

  36. X. Yang, L. Wang, C. Wang, W. Long, and Z. Shuai, Chem. Mater. 20, 3205 (2008).

    Article  Google Scholar 

  37. M. Frisch, G. Trucks, H. B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, and G. Petersson, Wallingford, CT 19, 227 (2009).

  38. M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, and C.J. Brabec, Adv. Mater. 18, 789 (2006).

    Article  Google Scholar 

  39. J. Ku, Y. Lansac, and Y.H. Jang, J. Phys. Chem. C 115, 21508 (2011).

    Article  Google Scholar 

  40. G. Zhang and C.B. Musgrave, J. Phys. Chem. A 111, 1554 (2007).

    Article  Google Scholar 

  41. L. Yang, J.-K. Feng, and A.-M. Ren, J. Mol. Struct. THEOCHEM 816, 161 (2007).

    Article  Google Scholar 

  42. N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletete, G. Durocher, Y. Tao, and M. Leclerc, J. Am. Chem. Soc. 130, 732 (2008).

    Article  Google Scholar 

  43. P. Peumans, A. Yakimov, and S.R. Forrest, J. Appl. Phys. 93, 3693 (2003).

    Article  Google Scholar 

  44. N. Bérubé, V. Gosselin, J. Gaudreau, and M. Côté, J. Phys. Chem. C 117, 7964 (2013).

    Article  Google Scholar 

  45. G. Li, R. Zhu, and Y. Yang, Nat. Photonics 6, 153 (2012).

    Article  Google Scholar 

  46. X. Liu, M. Li, R. He, and W. Shen, Phys. Chem. Chem. Phys. 16, 311 (2014).

    Article  Google Scholar 

  47. J. Zhang, H.-B. Li, S.-L. Sun, Y. Geng, Y. Wu, and Z.-M. Su, J. Mater. Chem. 22, 568 (2012).

    Article  Google Scholar 

  48. M. Guo, R. He, Y. Dai, W. Shen, M. Li, C. Zhu, and S.H. Lin, J. Phys. Chem. C 116, 9166 (2012).

    Article  Google Scholar 

  49. L. Zhang, W. Shen, R. He, X. Tang, Y. Yang, and M. Li, Mater. Chem. Phys. 175, 13 (2016).

    Article  Google Scholar 

  50. I.T. Lima, C. Risko, S.G. Aziz, D.A. da Silva Filho, and J.-L. Brédas, J. Mater. Chem. C 2, 8873 (2014).

    Article  Google Scholar 

  51. J. Bisquert, Phys. Chem. Chem. Phys. 10, 3175 (2008).

    Article  Google Scholar 

  52. M.Y. Kuo, H.Y. Chen, and I. Chao, Chem. Eur. J. 13, 4750 (2007).

    Article  Google Scholar 

  53. L. Wang, G. Nan, X. Yang, Q. Peng, Q. Li, and Z. Shuai, Chem. Soc. Rev. 39, 423 (2010).

    Article  Google Scholar 

  54. W.-Q. Deng and W.A. Goddard, J. Phys. Chem. B 108, 8614 (2004).

    Article  Google Scholar 

  55. V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Brédas, Chem. Rev. 107, 926 (2007).

    Article  Google Scholar 

  56. R. Marcus, Annu. Rev. Phys. Chem. 15, 155 (1964).

    Article  Google Scholar 

  57. R.A. Marcus, Angew. Chem. Int. Ed. 32, 1111 (1993).

    Article  Google Scholar 

  58. P. Siders and R. Marcus, J. Am. Chem. Soc. 103, 748 (1981).

    Article  Google Scholar 

  59. B.S. Brunschwig, J. Logan, M.D. Newton, and N. Sutin, J. Am. Chem. Soc. 102, 5798 (1980).

    Article  Google Scholar 

  60. G.R. Hutchison, M.A. Ratner, and T.J. Marks, JACS 127, 2339 (2005).

    Article  Google Scholar 

  61. L.Y. Zou, A.M. Ren, J.K. Feng, Y.L. Liu, X.Q. Ran, and C.C. Sun, J. Phys. Chem. A 112, 12172 (2008).

    Article  Google Scholar 

  62. S.C. Price, A.C. Stuart, L. Yang, H. Zhou, and W. You, J. Am. Chem. Soc. 133, 4625 (2011).

    Article  Google Scholar 

  63. M.E. Köse, J. Phys. Chem. C 115, 13076 (2011).

    Article  Google Scholar 

  64. M. Zhang, H.N. Tsao, W. Pisula, C. Yang, A.K. Mishra, and K. Müllen, J. Am. Chem. Soc. 129, 3472 (2007).

    Article  Google Scholar 

  65. X.-Y. Zhang and G.-J. Zhao, J. Phys. Chem. C 116, 13858 (2012).

    Article  Google Scholar 

  66. P.M. Beaujuge and J.M. Fréchet, J. Am. Chem. Soc. 133, 20009 (2011).

    Article  Google Scholar 

  67. P.P. Khlyabich, A.E. Rudenko, B. Burkhart, and B.C. Thompson, ACS Appl. Mater. Interfaces 6, 9913 (2015).

  68. K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas, and J. V. Manca, Phys. Rev. B Condensed Matter 81, 125204 (2015).

  69. D. Veldman, S.C. Meskers, and R.A. Janssen, Adv. Funct. Mater. 19, 1939 (2009).

    Article  Google Scholar 

  70. K. Vandewal, A. Gadisa, W.D. Oosterbaan, S. Bertho, F. Banishoeib, I.V. Severen, L. Lutsen, T.J. Cleij, D. Vanderzande, and J.V. Manca, Adv. Funct. Mater. 18, 2064 (2008).

    Article  Google Scholar 

  71. W. Li, K.H. Hendriks, A. Furlan, M.M. Wienk, and R.A. Janssen, J. Am. Chem. Soc. 137, 2231 (2016).

    Article  Google Scholar 

  72. K.H. Hendriks, W. Li, M.M. Wienk, and R.A. Janssen, J. Am. Chem. Soc. 136, 12130 (2014).

    Article  Google Scholar 

  73. K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, and J.V. Manca, Phys. Rev. B 81, 125204 (2010).

    Article  Google Scholar 

  74. B. Qi and J. Wang, Phys. Chem. Chem. Phys. 15, 8972 (2013).

    Article  Google Scholar 

  75. Z. Fu, W. Shen, R. He, X. Liu, H. Sun, W. Yin, and M. Li, Phys. Chem. Chem. Phys. 17, 2043 (2015).

    Article  Google Scholar 

  76. X. Liu, W. Shen, R. He, Y. Luo, and M. Li, J. Phys. Chem. C 118, 17266 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundamental Research Funds for the Central Universities (Grant No. XDJK2016C036) and Project Funded by China Postdoctoral Science Foundation (Grant No. 2016M592618).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 8845 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Shen, W., Fu, Z. et al. Density Functional Study on A-Units Based on Thieno[3,4-c]pyrrole-4,6-dione for Organic Solar Cells. J. Electron. Mater. 46, 4825–4834 (2017). https://doi.org/10.1007/s11664-017-5455-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5455-3

Keywords

Navigation