Skip to main content
Log in

Influence of CoO Nanoparticles on Properties of Barium Zirconium Titanate Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Composites of Ba(Zr0.07Ti0.93)O3 ceramic and CoO nanoparticles (at 1.0 vol.% to 3.0 vol.%) have been fabricated to investigate the effects of the CoO nanoparticles on the properties of the composites. X-ray diffraction data revealed that the modified samples contained Ba(Zr0.07Ti0.93)O3 and CoO phases. Addition of CoO nanoparticles improved the magnetic behavior and resulted in slight changes in ferroelectric properties. The composites showed a magnetoelectric effect in which the negative value of the magnetocapacitance increased with increasing CoO concentration. Examination of the dielectric spectra showed that the two phase-transition temperatures as observed for unmodified Ba(Zr0.07Ti0.93)O3 merged into a single phase-transition temperature for the composite samples. The composite samples also showed broad relative permittivity versus temperature (ε r T) curves with frequency dispersion. This dielectric behavior can be explained in terms of the Maxwell–Wagner mechanism. In addition, the Vickers hardness (H v) value of the samples increased with increasing CoO content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Tian, Y. Gong, D. Meng, Y. Li, and B. Kuang, J. Electron. Mater. 44, 2890 (2015).

    Article  Google Scholar 

  2. Z. Yu, C. Ang, R. Guo, and A.S. Bhalla, J. Appl. Phys. 92, 2655 (2002).

  3. P. Jarupoom, K. Pengpat, and G. Rujijanagul, Curr. Appl. Phys. 10, 557 (2010).

  4. N. Lertcumfu, K. Pengpat, S. Eitssayeam, T. Tunkasiri, and G. Rujijanagul, Ceram. Int. 41, S447 (2015).

  5. Z. Yu, C. Ang, R. Guo, and A.S. Bhalla, Appl. Phys. Lett. 81, 1285 (2002).

    Article  Google Scholar 

  6. C. Kruea-In, S. Eitssayeam, K. Pengpat, T. Tunkasiri, and G. Rujijanagul, Ferroelectric. 145, 127 (2011).

  7. P. Jarupoom and G. Rujijanagul, J. Appl. Phys. 114, 027018 (2013).

    Article  Google Scholar 

  8. Q. Zhang, H. Sun, X. Wang, Y. Zhang, and X. Li, J. Eur. Ceram. Soc. 34, 1439 (2014).

    Article  Google Scholar 

  9. P. Jarupoom, T. Tunkasiri, K. Pengpat, S. Eitssayeam, and G. Rujijanagul, Ferroelectrics 415, 88 (2011).

    Article  Google Scholar 

  10. W. Eerenstein, N.D. Mathur, and J.F. Scott, Nature 442, 759 (2006).

  11. Y. Chaudhari, C.M. Mahajan, A. Singh, P. Jagtap, R. Chatterjee, and S. Bendre, J. Magn. Magn. Mater. 395, 329 (2015).

    Article  Google Scholar 

  12. K. Tang, W. Bai, J. Liu, J. Yang, Y. Zhang, C.G. Duan, X. Tang, and J. Chu, Ceram. Int. 41, S185 (2015).

    Article  Google Scholar 

  13. K. Tajima, H.J. Hwang, M. Sando, and K. Niiihara, J. Eur. Ceram. Soc. 19, 1179 (1999).

    Article  Google Scholar 

  14. H.J. Hwang, K. Tajima, M. Sando, M. Toriyama, and K. Niihara, J. Ceram. Soc. Jpn. 108, 339 (2000).

    Article  Google Scholar 

  15. I. Fina, N. Dix, L. Fàbrega, F. Sánchez, and J. Fontcuberta, Thin Solid Films 518, 4634 (2010).

  16. C. Kruea-In, T. Glansuvarn, S. Eitssayeam, K. Pengpat, and G. Rujijanagul, Electron. Mater. Lett. 9, 833 (2013).

  17. N.S. Negi, A. Sharma, J. Shah, and R.K. Kotnala, Mater. Chem. Phys. 148, 1221 (2014).

  18. J.L. Clabel, F.L. Zabotto, I.C. Nogueira, P. Schio, D. Garcia, O.F. de Lima, E.R. Leite, F.M.A. Moreira, and C.A. Cardoso, J. Magn. Magn. Mater. 364, 18 (2014).

    Article  Google Scholar 

  19. P. Jarupoom, S. Eitssayeam, K. Pengpat, T. Tunkasiri, D.P. Cann, and G. Rujijanagul, Nanoscale Res. Lett. 7, 59 (2012).

    Article  Google Scholar 

  20. K. Praveena and K.B.R. Varma, J. Mater. Sci.: Mater. Electron. 25, 5403 (2014).

    Google Scholar 

  21. J. Peng, M. Hojamberdiev, H. Li, D. Mao, Y. Zhao, P. Liu, J. Zhou, and G. Zhu, J. Magn. Magn. Mater. 378, 298 (2015).

    Article  Google Scholar 

  22. P.S. Dobal, A. Dixit, R.S. Katiyar, Z. Yu, R. Guo, and A.S. Bhalla, J. Appl. Phys. 89, 8085 (2001).

    Article  Google Scholar 

  23. S. Sen and R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. 15, 671 (2004).

    Google Scholar 

  24. L. Zhang, D. Xue, and C. Gao, J. Magn. Magn. Mater. 267, 111 (2003).

    Article  Google Scholar 

  25. F. Moura, A.Z. Simoes, L.S. Cavalcante, M.A. Zaghete, J.A. Varela, and E. Longo, J. Alloys Compd. 466, L15 (2008).

    Article  Google Scholar 

  26. L.S. Cavalcante, M. Anicete-Santos, J.C. Sczancoski, L.G.P. Simões, M.R.M.C. Santos, J.A. Varela, P.S. Pizani, and E. Longo, J. Phys. Chem. Solids 69, 1782 (2008).

    Article  Google Scholar 

  27. N. Vittayakorn, S. Uttiya, G. Rujijanagul, and D.P Cann, J. Phys. D: Appl. Phys. 38, 2942 (2005).

  28. A.S. Fawzi, A.D. Sheikh, and V.L. Mathe, J. Alloys Compd. 493, 601 (2010).

  29. R.H. Kodama, S.A. Makhlouf, and A.E. Berkowitz, Phys. Rev. Lett. 79, 1393 (1997).

    Article  Google Scholar 

  30. H. Yang, Y. Sun, Y. Lin, X. Zhang, X. Liu, T. Wang, and F. Wang, J.Alloys Compd. 695, 991 (2017)

  31. X.Q. Chen, F.J. Yang, W.Q. Cao, H. Wang, C.P. Yang, D.Y. Wang, and K. Chen, Solid State Commun. 150, 1221 (2010).

    Article  Google Scholar 

  32. H. Meštrić, R.A. Eichel, T. Kloss, K.P. Dinse, S. Laubach, St. Laubach, P.C. Schmidt, K.A. Schönau, M. Knapp, and H. Ehrenberg, Phys. Rev. B 71, 134109 (2005).

    Article  Google Scholar 

  33. X. Chen, C. Wei, J. Xiao, Y. Xue, X. Zeng, F. Yang, P. Li, and Y. He, J. Phys. D: Appl. Phys. 46, 425001 (2013).

    Google Scholar 

  34. J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, and M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2004).

    Article  Google Scholar 

  35. J. Rani, K.L. Yadav, and S. Prakash, Mater. Res. Bull. 60, 367 (2014).

    Article  Google Scholar 

  36. X.L. Zhong, M. Liao, J.B. Wang, S.H. Xie, and Y.C. Zhou, J. Cryst. Growth 310, 2995 (2008).

    Article  Google Scholar 

  37. T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, Phys. Rev. B 67, 180401(R) (2003).

    Article  Google Scholar 

  38. N. Adhlakha, K.L. Yadav, and R. Singh, J. Mater. Sci. 50, 2073 (2015).

    Article  Google Scholar 

  39. F. Moura, A.Z. Simões, B.D. Stojanovic, M.A. Zaghete, E. Longo, and J.A. Varela, J. Alloys Compd. 462, 129 (2008).

    Article  Google Scholar 

  40. N. Nanakorn, P. Jalupoom, N. Vaneesorn, and A. Thanaboonsombut, Ceram. Int. 34, 779 (2008).

    Article  Google Scholar 

  41. Z. Yu and C. Ang, J. Appl. Phys. 91, 794 (2002).

    Article  Google Scholar 

  42. K. Pengpat, P. Jarupoom, P. Kantha, S. Eitssayeam, U. Intatha, G. Rujijanagul, and T. Tunkasiri, Curr. Appl. Phys. 8, 241 (2008).

    Article  Google Scholar 

  43. C. Puchmark, G. Rujijanagul, S. Jiansirisomboon, T. Tunkasiri, N. Vittayakorn, T. Comyn, and S.J. Milne, Curr. Appl. Phys. 6, 323 (2006).

    Article  Google Scholar 

  44. M. Sternitzke, J. Eur. Ceram. Soc. 17, 1061 (1997).

    Article  Google Scholar 

  45. I. Ahmad, M. Islam, A.A. Almajid, B. Yazdani, and Y. Zhu, Ceram. Int. 40, 9327 (2014).

    Article  Google Scholar 

  46. R.W. Rice, C.C. Wu, and F. Boichelt, J. Am. Ceram. Soc. 77, 2539 (1994).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gobwute Rujijanagul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarupoom, P., Jaita, P., Boothrawong, . et al. Influence of CoO Nanoparticles on Properties of Barium Zirconium Titanate Ceramics. J. Electron. Mater. 46, 4267–4275 (2017). https://doi.org/10.1007/s11664-017-5321-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5321-3

Keywords

Navigation