Skip to main content
Log in

The Sm-Ni-Fe System: Isothermal Section and Microwave Absorption Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The Sm-Ni-Fe ternary system has been investigated at 773 K by means of powder x-ray diffraction, metallography and scanning electron microscopy equipped with energy dispersive x-ray spectroscopy. The isothermal section consists of 16 single-phase regions, 29 two-phase regions and 14 three-phase regions. The influence of Fe-doping on the structure and the microwave absorption properties of the SmNi5 compound has been systematically studied. The homogeneity range in Sm16.67Ni83.33−x Fe x was determined as x = 16.67. The lattice parameters were found to gradually increase and the particle size become much finer with the increase of Fe concentration. All the samples exhibited good microwave absorption properties in the X-band (8–12 GHz). The highest reflection loss of the Sm16.67Ni83.33−x Fe x (x = 0.0, 5.0, 10.0,15.0, 16.67) alloys are −10.12 dB, −10.39 dB, −16.44 dB, −20.69 dB, and −43.05 dB at 6.96 GHz, 7.92 GHz, 8.56 GHz, 10.04 GHz, and 11.08 GHz, respectively. The absorption peak shifted towards the higher frequency region with the increasing amount of Fe substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Liu, F. Luo, J.B. Su, W.C. Zhou, and D.M. Zhu, J. Electron. Mater. 44, 867 (2015).

    Article  Google Scholar 

  2. A.L. Gaeta, M. Gruneisen, and R.W. Boyd, IEEE. J. Quantum Electron. 22, 1095 (1986).

    Article  Google Scholar 

  3. X.H. Ren and G.L. Xu, Magn. Magn. Mater. 354, 44 (2014).

    Article  Google Scholar 

  4. J. Zhan, Y.L. Yao, C.F. Zhang, and C.J. Li, J. Alloys Compd. 585, 240 (2014).

    Article  Google Scholar 

  5. G.Z. Xie, P. Wang, B.S. Zhang, L.K. Yuan, Y. Shi, P.H. Lin, and H.X. Lu, J. Magn. Magn. Mater. 320, 1026 (2008).

    Article  Google Scholar 

  6. X.X. Wang, M.M. Lu, W.Q. Cao, B. Wen, and M.S. Cao, Mater. Lett. 125, 107 (2014).

    Article  Google Scholar 

  7. S.Y. Zhang and Q.X. Cao, Mater. Sci. Eng., B 177, 678 (2012).

    Article  Google Scholar 

  8. X. Wang, R.Z. Gong, P.G. Li, L.Y. Liu, and W.M. Cheng, Mater. Sci. Eng., A 466, 178 (2007).

    Article  Google Scholar 

  9. G.B. Sun, B.X. Dong, M.H. Cao, B.Q. Wei, and C.W. Hu, Chem. Mater. 23, 1587 (2011).

    Article  Google Scholar 

  10. L. Wei, R. Che, Y. Jiang, and B. Yu, J. Environ. Sci.-China 25, S27 (2013).

    Article  Google Scholar 

  11. W. Xie, H.F. Cheng, Z.Y. Chu, Z.H. Chen, Y.J. Zhou, and C.G. Long, Adv. Mater. Res. 150, 1336 (2010).

    Article  Google Scholar 

  12. H.Y. Zhou, Y.G. Zhu, J.Q. Liu, Y.H. Zhuang, and S.L. Yuan, J. Alloys. Compd. 345, 167 (2002).

    Article  Google Scholar 

  13. J.Q. Liu, J. Alloys. Compd. 232, 269 (1996).

    Article  Google Scholar 

  14. J.X. Zheng, H.Y. Zhou, and J. Chin, Soc. Rare Earths. 4, 79 (1986).

    Google Scholar 

  15. D.X. Lü, C.P. Guo, C.R. Li, and Z.M. Du, Phys. Proc. 50, 383 (2013).

    Article  Google Scholar 

  16. S.K. Pan, J.L. Xiong, Q.R. Yao, G.H. Rao, L.C. Cheng, and H.Y. Zhou, J. Alloys Compd. 646, 399 (2015).

    Article  Google Scholar 

  17. K. Nouri, M. Jemmali, S. Walha, K. Zehani, L. Bessais, and A.B. Salah, J. Alloys Compd. 661, 508 (2016).

    Article  Google Scholar 

  18. Y.Y. Pan and J.X. Zhang, Acta. Phys. Sin. 32, 92 (1983).

    Google Scholar 

  19. S. Takeda, Y. Kitano, and Y. Komura, J. Less. Comm. Metals. 84, 317 (1982).

    Article  Google Scholar 

  20. L.I. Duarte, U.E. Klotz, C. Leinenbach, M. Palm, F. Stein, and J.F. Löffler, Intermetallics 18, 374 (2010).

    Article  Google Scholar 

  21. L.C. Cheng, J.L. Xiong, H.Y. Zhou, S.K. Pan, and H.H. Huang, J. Electron. Mater. 45, 1023 (2016).

    Article  Google Scholar 

  22. E. Michielssen, J.M. Sajer, S. Ranjithan, and R. Mittra, IEEE. Trans. Microw. Theory 41, 1024 (1993).

    Article  Google Scholar 

  23. S.B. Liao, Ferromagnetic (Part II) (Beijing: Science Press, 1988), pp. 3–90.

    Google Scholar 

  24. K. Yanagimoto, K. Majima, S. Sunada, and Y. Aikawa, J. Jpn. Soc. Powder Powder. Metal. 51, 293 (2004).

    Article  Google Scholar 

  25. A. Paoluzi, F. Albertini, and L. Pareti, J. Magn. Magn. Mater. 212, 183 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundations of China (No. 51361007, Nos. 51371061, 2016YFB0700901,) and Guangxi Natural Science Foundation (Nos. 2014GXNSFAA11833, 2016GXNSFGA38001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihao Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Q., Shen, Y., Yang, P. et al. The Sm-Ni-Fe System: Isothermal Section and Microwave Absorption Properties. J. Electron. Mater. 46, 1971–1976 (2017). https://doi.org/10.1007/s11664-017-5313-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5313-3

Keywords

Navigation