Skip to main content
Log in

Miniaturization and Bandwidth Enhancement of a Microstrip Patch Antenna Using Magneto-Dielectric Materials for Proximity Fuze Application

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The exact calculation of height of burst has always been a challenge in the design of proximity fuzes. Radio frequency-based sensors can be designed for this purpose but the size and bandwidth of the antenna increases the design complexity; hence, miniaturization of the patch antenna using barium hexaferrite (BaFe12O19) as substrate material is proposed in this paper. The nanohexaferrite substrate material was prepared using a wet chemical method and characterized for structural and electromagnetic properties. An average crystallite size of 60 nm was obtained from x-ray diffraction. Scanning electron microscopy and transmission electron microscopy also confirms the formation of homogenous nanoferrites. Complex permittivity (ɛ * = 6.2 − 0.04 j) and complex permeability (μ * = 1.9 − 0.18 j) were obtained from electromagnetic characterization. The antenna structure fabricated and simulated confirms that, with the obtained electromagnetic parameters of synthesized magneto-dielectric material, the size of antenna can be reduced up to 42.5%. It also increases the bandwidth from 68 MHz to 166 MHz with respect to antenna on FR4 substrate. Therefore, BaFe12O19 is proposed as a suitable candidate for a high-bandwidth, miniaturized antenna for proximity fuzes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Debao, H. Wenqing, L. Zhongwei, and Z. Lei, Adv. Mater. Res. 940, 513 (2014).

    Article  Google Scholar 

  2. V.K. Arora, Proximity Fuzes: Theory and Techniques (India: Defence Research and Development Organisation, Ministry of Defence, 2010).

    Google Scholar 

  3. D.L. Liu, X.B. Zhu, K.L. Xu, and D.M. Fang, Appl. Mech. Mater. 513 (2014).

  4. Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheurer, Nano Lett. 14, 2485 (2014).

    Article  Google Scholar 

  5. D.A. Grier, Computer. 39, 8 (2006).

    Google Scholar 

  6. R.R. Schaller, IEEE Spectr. 34, 52 (1997).

    Article  Google Scholar 

  7. C.A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (New York: Wiley India, 2011).

    Google Scholar 

  8. H. Mosallaei and K. Sarabandi, IEEE Trans, Antenn. Propag. 55, 45 (2007).

    Article  Google Scholar 

  9. H. Mosallaei and K. Sarabandi, IEEE Trans, Antenn. Propag. 52, 1558 (2004).

    Article  Google Scholar 

  10. K.R. Carver and J.W. Mink, IEEE Trans, Antenn. Propag. 29, 2 (1981).

    Article  Google Scholar 

  11. R. Bancroft, Microstrip and Printed Antenna, 2nd ed. (McGraw Hill: Scitech Publishing Inc, 2008).

    Google Scholar 

  12. A. Sharma and M.N. Afsar, IEEE Trans. Magn. 47, 308 (2011).

    Article  Google Scholar 

  13. A. Saini, A. Thakur, and P. Thakur, J. Mater. Sci. 27, 2816 (2016).

    Google Scholar 

  14. R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antennas Design Handbook (London: Artech House, 2001).

    Google Scholar 

  15. D. Sarmah, J.R. Deka, S. Bhattacharyya, and N. Bhattacharya, J. Electron. Mater. 39, 2359 (2010).

    Article  Google Scholar 

  16. R.C. Hansen and M. Burke, Microw. Opt. Technol. Lett. 26, 72 (2000).

    Article  Google Scholar 

  17. H. Mosallaei and K. Sarabandi, IEEE Trans. Antenn. Propag. 52, 1558 (2004).

    Article  Google Scholar 

  18. S.N. Das and K. Chowdhury, IEEE Trans. Antenn. Propag. 30, 499 (1982).

    Article  Google Scholar 

  19. P. Ikonen, K.N. Rozanov, A.V. Osipov, P. Alitalo, and S.A. Tretyakov, IEEE Trans. Antenn. Propag. 54, 3391 (2006).

    Article  Google Scholar 

  20. N. Altunyurt, M. Swaminathan, P.M. Raj, and V. Nair, Electron. Compon. Technol. Conf. ECTC 801 (2009).

  21. A. Saini, K. Rana, A. Thakur, P. Thakur, J.L. Mattei, and P. Queffelec, Mater. Res. Bull. 76, 94 (2016).

    Article  Google Scholar 

  22. J.L. Mattei, L. Huitema, P. Queffelec, J.F. Pintos, P. Minard, and A. Sharahia, IEEE Trans. Magn. 47, 3720 (2011).

    Article  Google Scholar 

  23. P. Mathur, A. Thakur, J.H. Lee, and M. Singh, Mater. Lett. 64, 2738 (2010).

    Article  Google Scholar 

  24. A. Thakur, P. Thakur, and J.H. Hsu, IEEE Trans. Magn. 47, 4336 (2010).

    Article  Google Scholar 

  25. A. Goldman, Modern Ferrite Technology, 2nd ed. (New York: Van Nostrand Reinhold, 1990).

    Google Scholar 

  26. J. Lee, J. Heo, and Y. Han, IEEE Trans. Antenn. Propag. 60, 2080 (2012).

    Article  Google Scholar 

  27. K. Rana, P. Thakur, P. Sharma, M. Tomar, and V. Gupta, Ceramics Int. 41, 4492 (2015).

    Article  Google Scholar 

  28. Z. Zheng, H. Zhang, J.Q. Xiao, and F. Bai, IEEE Trans. Magn. 49, 214 (2013).

    Google Scholar 

  29. P. Thakur, A. Thakur, and M. Singh, Mod. Phys. Lett. 21, 1425 (2004).

    Google Scholar 

  30. J. Smit and H.P.J. Wijn, Les Ferrites (Paris: Dunod, 1961).

    Google Scholar 

  31. Ansoft High Frequency Structures Simulator (HFSS), Ver. 11.0, Ansoft Corporation (2008). http://www.ansys.com/ Products/Electronics/ANSYS-HFSS.

  32. L. Rezlescu, E. Rezlescu, P.D. Popa, and N. Rezlescu, J. Magn. Magn. Mater. 193, 288 (1999).

    Article  Google Scholar 

  33. A. Saini, A. Thakur, and P. Thakur, J. Electron. Mater. 45, 4162 (2016).

    Article  Google Scholar 

  34. A. Thakur, A. Chevalier, J.L. Mattei, and P. Queffélec, J. Appl. Phys. 108, 014301 (2010).

    Article  Google Scholar 

  35. W. Li, X. Qiao, M. Li, T. Liu, and H.X. Peng, Mater. Res. Bull. 48, 4449 (2013).

    Article  Google Scholar 

  36. M.M. Rashid and I.A. Ibrahim, J. Magn. Magn. Mater. 323, 2158 (2011).

    Article  Google Scholar 

  37. K. Sadhana, K. Praveena, S. Matteppanavar, and B. Angadi, Appl. Nanosci. 2, 247 (2012).

    Article  Google Scholar 

  38. P.M.T. Ikonen, S.I. Maslovski, C.R. Simovski, and S.A. Tretyakov, IEEE Trans. Antenn. Propag. 54, 1654 (2006).

    Article  Google Scholar 

  39. R.A. Pucel and D.J. Masse, IEEE Microw. Theory Technol. 20, 304 (1972).

    Article  Google Scholar 

  40. D. Rialet, A. Sharaiha, A.C. Tarot, and C. Delaveaud, IEEE Antenn. Wirel. Propag. 11, 1410 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Saini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, A., Thakur, A. & Thakur, P. Miniaturization and Bandwidth Enhancement of a Microstrip Patch Antenna Using Magneto-Dielectric Materials for Proximity Fuze Application. J. Electron. Mater. 46, 1902–1907 (2017). https://doi.org/10.1007/s11664-016-5256-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5256-0

Keywords

Navigation