Skip to main content
Log in

Thermodynamic Modeling of Ag-Ni System Combining Experiments and Molecular Dynamic Simulation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ag-Ni is a simple and important system with immiscible liquids and (Ag,Ni) phases. Previously, this system has been thermodynamically modeled utilizing certain thermochemical and phase equilibria information based on conjecture. An attempt is made in this study to determine the missing information which are difficult to measure experimentally. The boundaries of the liquid miscibility gap at high temperatures are determined using a pyrometer. The temperature of the liquid ⇌ (Ag) + (Ni) eutectic reaction is measured using differential thermal analysis. Tie-lines of the Ag-Ni system at 1023 K and 1473 K are measured using a conventional metallurgical method. The enthalpy of mixing of the liquid at 1773 K and the (Ag,Ni) at 973 K is calculated by molecular dynamics simulation using a large-scale atomic/molecular massively parallel simulator. These results along with literature information are used to model the Gibbs energy of the liquid and (Ag,Ni) by a calculation of phase diagrams approach, and the Ag-Ni phase diagram is then calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Lyman, Metals Handbook (Materials Park, Ohio: American Society for Metals, 1948), pp. 1110–1132.

    Google Scholar 

  2. R.V. Minakova, A.P. Pachek, L.A. Kryachko, A.P. Kresanova, and V.G. Zatovskii, Powder Metall. Met. C+ 39, 78 (2000).

    Article  Google Scholar 

  3. Z.C. Li, J.B. Liu, Z.F. Li, and B.X. Liu, J. Phys.: Condens. Matter 12, 9231 (2000).

    Google Scholar 

  4. M. Hansen and K. Anderko, Constitution of Binary Alloys, 2nd ed. (New York: McGraw-Hill, 1958), pp. 36–37.

    Google Scholar 

  5. M. Hansen, R.P. Elliott, and F.A. Shunk, Constitution of Binary Alloys (New York: McGraw-Hill, 1965), p. 14. (First-supplement).

    Google Scholar 

  6. M. Singleton and P. Nash, J. Phase Equilib. 8, 119 (1987).

    Article  Google Scholar 

  7. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, eds., Binary Alloy Phase Diagram, 2nd ed. (Materials Park, Ohio: ASM International, 1990), pp. 64–66.

    Google Scholar 

  8. O. Madelung, eds., Landolt–Börnstein—Group IV Physical Chemistry (Berlin: Springer, 1991), p. 1.

    Google Scholar 

  9. H. Okamoto, J. Phase Equilib. 34, 493 (2013).

    Article  Google Scholar 

  10. X.J. Liu, F. Gao, C.P. Wang, and K. Ishida, J. Electron. Mater. 37, 210 (2008).

    Article  Google Scholar 

  11. G.I. Petrenko, Z. Anorg. Allg. Chem. 53, 212 (1907).

    Article  Google Scholar 

  12. P. de Cesaris, Gazz. Chim. Ital. 43, 365 (1913).

    Google Scholar 

  13. G. Tammann and W. Oelson, Z. Anorg. Allg. Chem. 186, 264 (1930).

    Google Scholar 

  14. W. Guertler and A. Bergmann, Z. MetaIlkd. 25, 56 (1933).

    Google Scholar 

  15. D.A. Stevenson and J. Wulff, Trans. Metall. Soc. AIME 221, 271 (1961).

    Google Scholar 

  16. S.I. Popel and V.N. Kozhurkov, Izv. Akad. Nauk SSSR Met. 2, 49 (1974).

    Google Scholar 

  17. J. Ladet, J. Bernardini, and F. Cabane-Brouty, Scr. Metall. 10, 195 (1976).

    Article  Google Scholar 

  18. C. Colinet and A. Pasturel, Z. Metallkd. 89, 863 (1998).

    Google Scholar 

  19. H.G. Zolla and F. Spaepen, Acta Mater. 47, 2391 (1999).

    Article  Google Scholar 

  20. U. Saeed, H. Flandorfer, and H. Ipser, J. Mater. Res. 21, 1294 (2006).

    Article  Google Scholar 

  21. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

  22. T. Fang, L. Wang, C.X. Peng, and Y. Qi, J. Phys. Condens. Matter 24, 1 (2012).

    Google Scholar 

  23. V.K. Shen, D. Siderius, W. Krekelberg, eds., NIST Standard Reference Simulation Website, NIST Standard Reference Database Number 173, http://www.nist.gov/mml/csd/informaticsresearch/srsw.cfm. Accessed November 2015.

  24. X.W. Zhou, R.A. Johnson, and H.N.G. Wadley, Phys. Rev. B. 69, 1 (2004).

    Google Scholar 

  25. J.O. Andersson, T. Helander, L. Hglund, P. Shi, and B. Sundman, Calphad 26, 273 (2002).

    Article  Google Scholar 

  26. M. Asta and S.M. Foiles, Phys. Rev. B. 37, 2389 (1996).

    Article  Google Scholar 

  27. Thermo-Calc Software SSUB SGTE Substances Database Version 4. http://www.thermocalc.com/academia/researchers/how-to-cite-thermo-calc-products/. Accessed 23 March, 2016.

  28. F.R. De Boer, R. Boom, W.C.M. Mattens, A. Miedema, and A. Niessen, Cohesion in Metals: Transition Metal Alloys, Vol. 1 (Amsterdam: North-Holland, 1988), pp. 291–336.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinn-wen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkumar, V.B., Chen, Sw. Thermodynamic Modeling of Ag-Ni System Combining Experiments and Molecular Dynamic Simulation. J. Electron. Mater. 46, 2282–2289 (2017). https://doi.org/10.1007/s11664-016-5246-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5246-2

Keywords

Navigation