Skip to main content
Log in

Performance Model and Sensitivity Analysis for a Solar Thermoelectric Generator

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, a regression model for evaluating the performance of solar concentrated thermoelectric generators (SCTEGs) is established and the significance of contributing parameters is discussed in detail. The model is based on several natural, design and operational parameters of the system, including the thermoelectric generator (TEG) module and its intrinsic material properties, the connected electrical load, concentrator attributes, heat transfer coefficients, solar flux, and ambient temperature. The model is developed by fitting a response curve, using the least-squares method, to the results. The sample points for the model were obtained by simulating a thermodynamic model, also developed in this paper, over a range of values of input variables. These samples were generated employing the Latin hypercube sampling (LHS) technique using a realistic distribution of parameters. The coefficient of determination was found to be 99.2%. The proposed model is validated by comparing the predicted results with those in the published literature. In addition, based on the elasticity for parameters in the model, sensitivity analysis was performed and the effects of parameters on the performance of SCTEGs are discussed in detail. This research will contribute to the design and performance evaluation of any SCTEG system for a variety of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.P. Bowman, J. Sacks, and Y.F. Chang, J. Atmos. Sci. 50, 1267–1278 (1993).

    Article  Google Scholar 

  2. P.J., Martí and J.M. Pinazom, Int. J. Therm. Sci. (2003). doi:10.1016/S1290-0729(02)00038-8.

  3. E.A. Koeppel, S.A. Klein, J.W. Mitchell, and B.A. Flake, HVAC&R Res. 1, 4 (1995).

    Article  Google Scholar 

  4. C.K. Ho, S.S. Khalsa, and G.J. Kolb, Sol. Energy (2011). doi:10.1016/j.solener.2010.05.004.

    Google Scholar 

  5. F. Zaversky, J. García-Barberena, M. Sanchez, and D. Astrain, Sol. Energy (2012). doi:10.1016/j.solener.2012.04.015.

    Google Scholar 

  6. J. García-Barberena, P. Garcia, M. Sanchez, M.J. Blanco, C. Lasheras, A. Padrós, and J. Arraiza, J. Sol. Energy (2012). doi:10.1016/j.solener.2011.09.018.

    Google Scholar 

  7. H. Xi, L. Luo, and G. Fraisse, Renew. Sustain. Energy Rev. (2007). doi:10.1016/j.rser.2005.06.008.

    Google Scholar 

  8. D. Mills, Sol. Energy (2004). doi:10.1016/S0038-092X(03)00102-6.

    Google Scholar 

  9. S.P. Sukhatme, Indian Academy of Sciences Chemical Sciences Proceedings (1997), pp. 521–531.

  10. P.L. Geok, R. Affandi, A. Ghani, M. Ruddin, C.K. Gan, and J. Zanariah, Appl. Mech. Mater. (2015). doi:10.4028/www.scientific.net/AMM.785.576.

    Google Scholar 

  11. J. Schlaich, The Solar Chimney: Electricity from the Sun (Stuttgart: Edition Axel Menges, 1996), p. 12.

    Google Scholar 

  12. E. Zarza, L. Valenzuela, J. Leon, K. Hennecke, M. Eck, H.D. Weyers, and M. Eickoff, Energy (2004). doi:10.1016/S0360-5442(03)00172-5.

    Google Scholar 

  13. S. Priya and D.J. Inman, Energy Harvesting Technologies (New York: Springer, 2009), pp. 323–336.

    Book  Google Scholar 

  14. R. Amatya and R.J. Ram, J Elec Mater. (2010). doi:10.1007/s11664-010-1190-8.

    Google Scholar 

  15. D.K.C. MacDonald, Thermoelectricity: An Introduction to the Principles (New York: Dover, 2006), pp. 1–4.

    Google Scholar 

  16. A.I. Novikov, J. Eng. Phys. Thermophys. (2001). doi:10.1023/A:1016667129697.

    Google Scholar 

  17. G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, and T. Caillat, Int. Mater. Rev. (2013). doi:10.1179/095066003225010182.

    Google Scholar 

  18. B. Orr, J. Taglieri, L.C. Ding, and A. Akbarzadeh, Energy Convers. Manag. (2016). doi:10.1016/j.enconman.2016.02.074.

    Google Scholar 

  19. J. Chen, B. Lin, H. Wang, and G. Lin, Semicond. Sci. Technol. 15, 2 (2000).

    Google Scholar 

  20. A.Z. Sahin and B.S. Yilbas, Energy Convers. Manag. (2013). doi:10.1016/j.enconman.2012.07.020.

    Google Scholar 

  21. S.A. Omer and D.G. Infield, Sol. Energy Mater. Sol. Cells (1998). doi:10.1016/S0927-0248(98)00008-7.

    Google Scholar 

  22. B. Lenoir, A. Dauscher, P. Poinas, H. Scherrer, and L. Vikhor, Appl. Therm. Eng. (2003). doi:10.1016/S1359-4311(03)00065-6.

    Google Scholar 

  23. J. Xiao, T. Yang, P. Li, P. Zhai, and Q. Zhang, Appl. Energy (2012). doi:10.1016/j.apenergy.2011.06.006.

    Google Scholar 

  24. H. Fan, R. Singh, and A. Akbarzadeh, J. Electron. Mater. (2011). doi:10.1007/s11664-011-1625-x.

    Google Scholar 

  25. Y. Cai, J. Xiao, W. Zhao, X. Tang, and Q. Zhang, J. Electron. Mater. (2011). doi:10.1007/s11664-011-1616-y.

    Google Scholar 

  26. P. Li, L. Cai, P. Zhai, X. Tang, Q. Zhang, and M. Niino, J. Electron. Mater. (2010). doi:10.1007/s11664-010-1279-0.

    Google Scholar 

  27. V.S. Barashenkov, I.V. Puzynin, and A. Polanski, J. Comput. Methods Sci. Eng. (2002). doi:10.3233/JCM-2002-21-202.

    Google Scholar 

  28. C.T. Hsu, G.Y. Huang, H.S. Chu, B. Yu, and D.J. Yao, Appl. Energy (2011). doi:10.1016/j.apenergy.2011.07.033.

    Google Scholar 

  29. D.M. Rowe, Thermoelectrics Handbook (Boca Raton: CRC Press, 2006), pp. 1–4.

    Google Scholar 

  30. B.R. Munson, D.F. Young, and T.H. Okiishi, Fundamentals of Fluid Mechanics, 1st ed. (New York: Wiley, 1990), pp. 388–393.

    Google Scholar 

  31. R. Forristall, Report No. NREL/TP-550-34169, National Renewable Energy Laboratory, Colorado, October 2003.

  32. T.M. Tritt and M.A. Subramanian, MRS Bull. (2006). doi:10.1557/mrs2006.44.

    Google Scholar 

  33. N.U. Rehman and M.A. Siddiqui, J. Electron. Mater. (2016). doi:10.1007/s11664-016-4689-9.

    Google Scholar 

  34. M.D. McKay, R.J. Beckman, and W.J. Conover, Technometrics (1979). doi:10.1080/00401706.1979.10489755.

    Google Scholar 

  35. J.C. Helton and F.J. Davis, Reliab. Eng. Syst. Saf. (2003). doi:10.1016/S0951-8320(03)00058-9.

    Google Scholar 

  36. J.C. Helton, J.D. Johnson, C.J. Sallaberry, and C.B. Storlie, Reliab. Eng. Syst. Saf. (2006). doi:10.1016/j.ress.2005.11.017.

    Google Scholar 

  37. D.C. Montgomery and G.C. Runger, Applied Statistics and Probability for Engineers, 6th ed. (New York: Wiley, 2010), p. 481.

    Google Scholar 

  38. R.E. Walpole, R.H. Myers, S.L. Myers, and K. Ye, Probability and Statistics for Engineers and Scientists, 9th ed. (New York: Pearson, 2012), p. 407.

    Google Scholar 

  39. J.H. Lin, C.Y. Huang, and C.C. Su, Int. Commun. Heat Mass. Transf. (2007). doi:10.1016/j.icheatmasstransfer.2006.12.002.

    Google Scholar 

  40. S. A. Klein, F. L. Alvarado, Engineering Equation Solver. http://www.fchart.com/ees/. Accessed 09 July 2016.

  41. J.A. Duffie and W.A. Beckman, Solar Engineering of Thermal Processes, 3rd ed. (New York: Wiley, 2006), p. 189.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mubashir Ali Siddiqui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, N.U., Siddiqui, M.A. Performance Model and Sensitivity Analysis for a Solar Thermoelectric Generator. J. Electron. Mater. 46, 1794–1805 (2017). https://doi.org/10.1007/s11664-016-5230-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5230-x

Keywords

Navigation