Skip to main content
Log in

Theoretical Study and Simulations of an InGaN Dual-Junction Solar Cell

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study aims to determine the optimal configuration of the dual-junction InGaN solar cell. Several parameters of the dual-InGaN-junction solar cell have been investigated as the band gap combination and the thicknesses of the layers. Physical models and the optical properties of the In x Ga1−x N according to the indium content have been used. The dual-junction solar cell has been designed and simulated for each chosen band gap combination. The current densities drawn from the sub-cells were matched by adjusting their emitter layers thicknesses. The best conversion efficiency obtained for the optimized dual-junction In0.49Ga0.51N/In0.74Ga0.26N solar cell, under standard conditions, was 34.93% which corresponds to the band gap combination of 1.73 eV/1.13 eV. The short-circuit current density and the open circuit voltage obtained from the tandem cell In0.49Ga0.51N/In0.74Ga0.26N are respectively, 21.3941 mA/cm2 and 1.9144 V. The current mismatch was 0.057%. The effects of the front and back layers thicknesses of the top and bottom cells on the efficiency were also studied. Furthermore, the electrical characteristics of the dual-junction solar cell and its sub-cells were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Soga, Nanostructured Materials for Solar Energy Conversion, 1st ed. (Amsterdam: Elsevier, 2006).

    Google Scholar 

  2. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, 1st ed. (Chichester, England: Wiley, 2003).

    Book  Google Scholar 

  3. M.R. Islam, M.T. Hasan, A.G. Bhuiyan, M.R. Islam, and A. Yamamoto, IETECH J. Electr. Anal. 2, 237 (2008).

    Google Scholar 

  4. N. Jain and M.K. Hudait, IEEE J. Photovolt. 3, 528 (2013). doi:10.1109/JPHOTOV.2012.2213073.

    Article  Google Scholar 

  5. N. Akter, M.A. Matin, and N. Amin, in IEEE Conference on Clean Energy and Technology (2013). doi:10.1109/CEAT.2013.6775678.

  6. A. Mesrane, F. Rahmoune, A. Mahrane, and A. Oulebsir, Int. J. Photoenergy 2015, 594858 (2015). doi:10.1155/2015/594858.

    Article  Google Scholar 

  7. H. Hamzaoui, A.S. Bouazzi, and B. Rezig, Sol. Energy Mater. Sol. Cells 87, 595 (2005). doi:10.1016/j.solmat.2004.08.020.

    Article  Google Scholar 

  8. X. Shen, S. Lin, F. Li, Y. Wei, S. Zhong, H. Wan, and J. Li, Proc. SPIE 7045, 70450E (2008). doi:10.1117/12.793997.

    Article  Google Scholar 

  9. X. Zhang, X. Wang, H. Xiao, C. Yang, J. Ran, C. Wang, Q. Hou, J. Li, and Z. Wang, J. Phys. D Appl. Phys. 41, 245104 (2008). doi:10.1088/0022-3727/41/24/245104.

    Article  Google Scholar 

  10. F. Bouzid and S. Ben Machiche, Revue des Energies Renouvelables 14, 47 (2011).

    Google Scholar 

  11. J.Y. Chang, S.H. Yen, Y.A. Chang, B.T. Liou, and Y.K. Kuo, IEEE Trans. Electron Devices 60, 4140 (2013). doi:10.1109/TED.2013.2285573.

    Article  Google Scholar 

  12. Z. Li, H. Xiao, X. Wang, C. Wang, Q. Deng, L. Jing, J. Ding, and X. Hou, Phys. B Condens. Matter 414, 110 (2013). doi:10.1016/j.physb.2013.01.026.

    Article  Google Scholar 

  13. S.W. Feng, C.M. Lai, C.Y. Tsai, and L.W. Tu, Nanoscale Res. Lett. 9, 652 (2014). doi:10.1186/1556-276X-9-652.

    Article  Google Scholar 

  14. S.R. Kurtz, P. Faine, and J.M. Olson, J. Appl. Phys. 68, 1890 (1990). doi:10.1063/1.347177.

    Article  Google Scholar 

  15. M. Nawaz and A. Ahmad, Semicond. Sci. Technol. 27, 035019 (2012). doi:10.1088/0268-1242/27/3/035019.

    Article  Google Scholar 

  16. M. Farahmand, C. Garetto, E. Bellotti, K.F. Brennan, M. Goano, E. Ghillino, G. Ghione, J.D. Albrecht, and P.P. Ruden, IEEE Trans. Electron Devices 48, 535 (2001). doi:10.1109/16.906448.

    Article  Google Scholar 

  17. A. Martí and G.L. Araújo, Sol. Energy Mater. Sol. Cells 43, 203 (1996). doi:10.1016/0927-0248(96)00015-3.

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Algerian Ministry for High Education and Scientific Research. We would like to thank Dr. Abderrahmane Diaf for his valuable advice on the writing of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mesrane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesrane, A., Mahrane, A., Rahmoune, F. et al. Theoretical Study and Simulations of an InGaN Dual-Junction Solar Cell. J. Electron. Mater. 46, 1458–1465 (2017). https://doi.org/10.1007/s11664-016-5176-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5176-z

Keywords

Navigation