Skip to main content
Log in

Length-Dependent Electromigration Behavior of Sn58Bi Solder and Critical Length of Electromigration

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

On the basis of a developed test structure, electromigration (EM) tests of Sn58Bi solder strips with lengths of 50 μm, 100 μm, and 150 μm were simultaneously conducted at a current density of 27 kA/cm2 at 373 K. Length-dependent EM behavior was detected, and the mechanism is discussed. Bi atoms were segregated to the anode side more easily as the strip length increased, which resulted in the formation of a thicker Bi-rich layer or Sn-Bi mixed hillocks. The results reveal the existence of back flow that depends on the solder joint length. The back flow is most likely caused by an oxide layer formed on the Sn58Bi solder. By measuring the thicknesses of the Bi-rich layers, the Bi drift velocities were obtained. The critical length of the solder joint and the critical product of the length and the current density were estimated to be 16 μm and 43 A/cm, respectively. This observation will assist design of advanced electronic devices to anticipate EM reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.L. Yang and J.K. Shang, J. Electron. Mater. 34, 1363 (2005).

    Article  Google Scholar 

  2. L. Chen and C. Chen, J. Mater. Res. 21, 962 (2006).

    Article  Google Scholar 

  3. C. Chen, L. Chen, and Y. Lin, J. Electron. Mater. 36, 168 (2007).

    Article  Google Scholar 

  4. X. Zhao, M. Saka, M. Muraoka, M. Yamashita, and H. Hokazono, J. Electron. Mater. 43, 4179 (2014).

    Article  Google Scholar 

  5. C.C. Wei and C.Y. Liu, J. Mater. Res. 20, 2072 (2005).

    Article  Google Scholar 

  6. Y. Hsu, D. Che, P.C. Liu, and C. Chen, J. Mater. Res. 20, 2831 (2005).

    Article  Google Scholar 

  7. C.C. Wei and C. Chen, Appl. Phys. Lett. 88, 182105 (2006).

    Article  Google Scholar 

  8. R. Agarwal, S.E. Ou, and K.N. Tu, J. Appl. Phys. 100, 024909 (2006).

    Article  Google Scholar 

  9. Y.T. Huang, H.H. Hsu, and A.T. Wu, J. Appl. Phys. 115, 034904 (2014).

    Article  Google Scholar 

  10. I.A. Blech, J. Appl. Phys. 47, 1203 (1976).

    Article  Google Scholar 

  11. I.A. Blech and C. Herring, Appl. Phys. Lett. 29, 131 (1976).

    Article  Google Scholar 

  12. C. Chen and C. Huang, J. Mater. Res. 23, 1051 (2008).

    Article  Google Scholar 

  13. X. Zhao, M. Saka, M. Yamashita, and H. Hokazono, Microsyst. Technol. 18, 2077 (2012).

    Article  Google Scholar 

  14. C. Chen, H.M. Tong, and K.N. Tu, Annu. Rev. Mater. Res. 40, 531 (2010).

    Article  Google Scholar 

  15. S.W. Liang, C. Chen, J.K. Han, L. Xu, K.N. Tu, and Y. Lai, J. Appl. Phys. 107, 093715 (2010).

    Article  Google Scholar 

  16. Y.C. Chan and D. Yang, Prog. Mater. Sci. 55, 428 (2010).

    Article  Google Scholar 

  17. C.K. Lin, W.A. Tsao, Y.C. Liang, and C. Chen, J. Appl. Phys. 114, 113711 (2013).

    Article  Google Scholar 

  18. X. Gu, D. Yang, Y.C. Chan, and B.Y. Wu, J. Mater. Res. 23, 2591 (2008).

    Article  Google Scholar 

  19. X. Gu and Y.C. Chan, J. Appl. Phys. 105, 093537 (2009).

    Article  Google Scholar 

  20. G. Xu, H. He, and F. Guo, J. Electron. Mater. 38, 273 (2009).

    Article  Google Scholar 

  21. F. Ouyang, K. Chen, K.N. Tu, and Y. Lai, Appl. Phys. Lett. 91, 231919 (2007).

    Article  Google Scholar 

  22. K.N. Tu, Phys. Rev. B 49, 2030 (1994).

    Article  Google Scholar 

  23. G.T.T. Sheng, C.F. Hu, W.J. Choi, K.N. Tu, Y.Y. Bong, and L. Nguyen, J. Appl. Phys. 92, 64 (2002).

    Article  Google Scholar 

  24. Y.-T. Cheng, A.M. Weiner, C.A. Wong, M.P. Balogh, and M.J. Lukitsch, Appl. Phys. Lett. 81, 3248 (2002).

    Article  Google Scholar 

  25. W. Shim, J. Ham, K. Lee, W.Y. Jeung, M. Johnson, and W. Lee, Nano Lett. 9, 18 (2009).

    Article  Google Scholar 

  26. M. Saka, F. Yamaya, and H. Tohmyoh, Scr. Mater. 56, 1031 (2007).

    Article  Google Scholar 

  27. H.B. Huntington and A.R. Grone, J. Phys. Chem. Solids 20, 76 (1961).

    Article  Google Scholar 

  28. K.N. Tu, J. Appl. Phys. 94, 5451 (2003).

    Article  Google Scholar 

  29. E.T. Ogawa, A.J. Bierwag, K. Lee, H. Matsuhashi, P.R. Justison, A.N. Ramamurthi, P.S. Ho, V.A. Blaschke, D. Griffiths, A. Nelsen, M. Breen, and R.H. Havemann, Appl. Phys. Lett. 78, 2652 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Muraoka, M. & Saka, M. Length-Dependent Electromigration Behavior of Sn58Bi Solder and Critical Length of Electromigration. J. Electron. Mater. 46, 1287–1292 (2017). https://doi.org/10.1007/s11664-016-5093-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5093-1

Keywords

Navigation