Skip to main content
Log in

Dielectric Relaxation Behavior and AC Electrical Conductivity Study of 2-(1,2-Dihydro-7-Methyl-2-Oxoquinoline-5-yl) Malononitrile (DMOQMN)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Dielectric relaxation and alternative current conductivity of a new organic compound 2-(1,2-dihydro-7-methyl-2-oxoquinoline-5-yl) malononitrile (DMOQMN) have been investigated. X-ray diffraction (XRD) at room temperature reveals that DMOQMN samples have a polycrystalline structure of the triclinic system. The analysis of the dielectric constant and dielectric loss index suggested the dominant polarization is performed and the Maxwell–Wagner–Sillar type polarization is dominating at low frequency and high temperature. These results have been confirmed by the XRD and dielectric modulus. The estimated relaxation time and the activation energy are 9 × 10−13 s and 0.43 eV, respectively. Our results indicated that the conduction mechanism of DMOQMN is controlled by the correlation barrier hopping (CBH) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Arivazhagana and J.S. Kumar, Spectrochim. Acta Part A 82, 228 (2011).

    Article  Google Scholar 

  2. T.K. Lu and Y.S. Ocak, Microelectron. Eng. 88, 151 (2011).

    Google Scholar 

  3. Z. Bao, A.J. Lovinger, and A. Dodabalapur, Appl. Phys. Lett. 69, 3066 (1996).

    Article  Google Scholar 

  4. M. Ishii and Y. Taga, Appl. Phys. Lett. 803, 430 (2002).

    Google Scholar 

  5. M.M. El-Nahass, K.F. Abd El-Rahman, A.A.M. Farag, and A.A.A. Darwish, Org. Electron. 6, 129 (2005).

    Article  Google Scholar 

  6. M.M. El-Nahass, H.M. Zeyada, K.F. Abd-El-Rahman, A.A.M. Farag, and A.A.A. Darwish, Sol. Energy Mater. Sol. Cells 91, 1120 (2007).

    Article  Google Scholar 

  7. P. Peumans, V. Bulovic, and S.R. Forrest, Appl. Phys. Lett. 76, 3855 (2000).

    Article  Google Scholar 

  8. E. Malle, W. Stadibauer, G. Ostermann, B. Hofmann, H.J. Leis, and G.M. Kostner, Eur. J. Med. Chem. 25, 137 (1990).

    Article  Google Scholar 

  9. I.V. Ukrainets, S.V. Solobodzyan, V.I. Krivobok, P.A. Bezygly, V.L. Triskach, A.V. Turov, S.V. Gladchenko, and G.V. Obolentseva, Farm Zh (Kiev) 2, 78 (1991).

    Google Scholar 

  10. I.V. Ukrainets, S.V. Solobodzyan, V.I. Krivobok, P.A. Bezygly, V.L. Triskach, A.V. Turov, S.V. Gladchenko, and G.V. Obolentseva, Chem. Abstr. 115, 49362 (1991).

    Google Scholar 

  11. E.A. Mohamed, J. Chem. Soc. Pak. 13, 166 (1991).

    Google Scholar 

  12. V.K. Manohar, M.K. Geeta, C.-H. Lin, and Ch-M Sun, Curr. Med. Chem. 13, 2795 (2006).

    Article  Google Scholar 

  13. S. Marcaccino, R. Pepino, M. Cruz Pozo, S. Basurto, M. Garia-valverde, and T. Torroba, Tetrahedron Lett. 45, 3999 (2004).

    Article  Google Scholar 

  14. N.A. El-Ghamaz, M.A. Diab, A.A. El-Bindary, A.Z. El-Sonbati, and S.G. Nozha, Spectrochim. Acta Part A 143, 200 (2015).

    Article  Google Scholar 

  15. B. Barış, Phys. E 54, 171 (2013).

    Article  Google Scholar 

  16. V. Laxminarasimha Rao, T. Shekharam, T. Mohan Kumar, and M. Nagabhushanam, Mater. Chem. Phys. 159, 83 (2015).

    Article  Google Scholar 

  17. Ş. KarataŞ and Z. Kara, Microelectron. Reliab. 51, 2205 (2011).

    Article  Google Scholar 

  18. G. Yellaiah, T. Shekharam, K. Hadasa, and M. Nagabhushanam, J. Alloys Compd. 609, 192 (2014).

    Article  Google Scholar 

  19. S. Mahrous and T.A. Hanfy, Curr. Appl. Phys. 4, 461 (2004).

    Article  Google Scholar 

  20. M. Rajeswaran, T.N. Blanton, ChW Tang, W.C. Lenhart, S.C. Switalski, D.J. Giesen, B.J. Antalek, T.D. Pawlik, D.Y. Kondakov, N. Zumbulyadis, and R.H. Young, Polyhedron 28, 835 (2009).

    Article  Google Scholar 

  21. J.-H. Pan, Y.-M. Chou, H.-L. Chiu, B-Ch Wang, and J. Tamkang, J. Sci. Eng. 8, 175 (2005).

    Google Scholar 

  22. M.M. Ismail, J. Serb. Chem. Soc. 71, 721 (2006).

    Article  Google Scholar 

  23. R. Shirley, The CRYSFIRE System for Automatic Powder Indexing: User's Manual (Guildford, England: The Lattice Press, 2000).

  24. J. Laugier and B. Bochu, LMGP-Suite of Programs for the Interpretation of X-ray Experiments, ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46, 38042 (France: Saint-Martind’Héres, 2000).

    Google Scholar 

  25. A. Hassen, T.A. Hanfy, S. El-Sayed, and A. Himanshu, J. Appl. Phys. 110, 114119 (2011).

    Article  Google Scholar 

  26. R.P. Pawar, Ceram. Int. 40, 10423 (2014).

    Article  Google Scholar 

  27. S. Mahrous, T.A. Hanfy, and M.S. Sobhy, Curr. Appl. Phys. 7, 629 (2007).

    Article  Google Scholar 

  28. A.A.A. Darwish, M.M. El-Nahass, and A.E. Bekheet, J. Alloys Compd. 586, 142 (2014).

    Article  Google Scholar 

  29. T.A. Hanfy, J. Appl. Phys. 112, 034102 (2012).

    Article  Google Scholar 

  30. A. Karmakar and A. Ghosh, Curr. Appl. Phys. 12, 539 (2012).

    Article  Google Scholar 

  31. S.K. Rout, A. Hussian, J.S. Lee, I.W. Kim, and S.I. Woo, J. Alloys Compd. 11, 477 (2009).

    Google Scholar 

  32. A.A.A. Darwish, A.M. Hassanien, T.A. Hanafy, and M.M. El-Nahass, Synth. Met. 199, 339 (2015).

    Article  Google Scholar 

  33. A.A. Attia, H.S. Soliman, M.M. Saadeldin, and K. Sawaby, Synth. Met. 205, 139 (2015).

    Article  Google Scholar 

  34. M.M. El-Nahass and H.A.M. Ali, Solid State Commun. 152, 1084 (2012).

    Article  Google Scholar 

  35. M.M. El-Nahass, A.A. Atta, M.A. Kamel, and S.Y. Huthaily, Vacuum 91, 15 (2013).

    Article  Google Scholar 

  36. M.M. El-Nahass, A.A. Atta, E.F.M. El-Zaidia, A.A.M. Farag, and A.H. Ammar, Mater. Chem. Phys. 143, 490 (2014).

    Article  Google Scholar 

  37. E.M. El-Menyawy, H.M. Zeyada, and M.M. El-Nahass, Solid State Sci. 12, 2182 (2010).

    Article  Google Scholar 

  38. E.M. El-Menyawy, I.T. Zedan, A.M. Mansour, and H.H. Nawar, J. Alloys Compd. 611, 50 (2014).

    Article  Google Scholar 

  39. M. Amine Fersi, I. Chaabane, and M. Gargouri, Phys. E 83, 306 (2016).

    Article  Google Scholar 

  40. A. Abkarn, I. Chaabane, and K. Guidara, Phys. E 83, 119 (2016).

    Article  Google Scholar 

  41. J. Hazarika and A. Kumar, Phys. B 481, 268 (2016).

    Article  Google Scholar 

  42. N. Moutia, A. Oueslati, M. Ben Gzaiel, and K. Khirouni, Phys. E 83, 88 (2016).

    Article  Google Scholar 

  43. S. Guidara, H. Feki, and Y. Abid, J. Alloys Compd. 663, 424 (2016).

    Article  Google Scholar 

  44. A.K. Jonscher, Universal Relaxation Law (London: Chelsea Dielectrics Press, 1996).

    Google Scholar 

  45. R.H. Chen, R.Y. Chang, and S.C. Shern, J. Phys. Chem. Solids 63, 2069 (2002).

    Article  Google Scholar 

  46. A.K. Jonscher, Nature 267, 673 (1977).

    Article  Google Scholar 

  47. S.R. Elliott, Adv. Phys. 36, 135 (1987).

    Article  Google Scholar 

  48. V.K. Bahatnagar and K.L. Bhatiam, J. Non Cryst. Solids 119, 214 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. A. Darwish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nahass, M.M., El-Zaidia, E.F.M., Darwish, A.A.A. et al. Dielectric Relaxation Behavior and AC Electrical Conductivity Study of 2-(1,2-Dihydro-7-Methyl-2-Oxoquinoline-5-yl) Malononitrile (DMOQMN). J. Electron. Mater. 46, 1093–1099 (2017). https://doi.org/10.1007/s11664-016-5005-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5005-4

Keywords

Navigation