Skip to main content
Log in

Enhanced Electronic Transport Properties of Se-Doped SnTe1−xSex Nanoparticles by Microwave-Assisted Solvothermal Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Pure lead-free SnTe has limited thermoelectric potentials because of its low Seebeck coefficients and its relatively large thermal conductivity. Herein, we report on the enhanced electronic transport properties of selenium (Se) doped tin telluride (SnTe1−xSex) nanoparticles (NPs) synthesized by a rapid microwave-assisted solvothermal method and subsequent spark plasma sintering (SPS). Se-doped SnTe NPs, consisting of regular octahedral NPs with sizes from 1.5 μm to 300 nm, are synthesized with sufficient Se doping contents, and detailed structural characterizations reveal a large fraction of grain boundaries in our nanostructures, which is conducive to phonon scattering. Here we demonstrate that it is possible to enlarge the band gap by tuning the doping and composition, ultimately enhancing the power factor. As a result, a power factor value of ∼10.45 μW/cmK2 is attained at 773 K for the SnTe0.97Se0.03 sample, which is 35% higher than that of an undoped SnTe sample. This synthesis and assembly approach provides strategic guidance for maximizing the power factor by nanocrystallization and doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  2. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).

    Article  Google Scholar 

  3. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  4. W. Liu, X. Yan, G. Chen, and Z. Ren, Nano Energy 1, 42 (2012).

    Article  Google Scholar 

  5. C. Han, Z. Li, G.Q. Lu, and S.X. Dou, Nano Energy 15, 193 (2015).

    Article  Google Scholar 

  6. C. Zhang, Z. Peng, Z. Li, L. Yu, and Q. Xiong, Nano Energy 15, 688 (2015).

    Article  Google Scholar 

  7. Y. Pei, H. Wang, and G.J. Snyder, Adv. Mater. 24, 6125 (2012).

    Article  Google Scholar 

  8. J.P. Heremans, B. Wiendlocha, and A.M. Chamoire, Energy Environ. Sci. 5, 5510 (2012).

    Article  Google Scholar 

  9. K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  Google Scholar 

  10. A. Kanatzia, C.H. Papageorgiou, C.H. Lioutas, and T.H. Kyratsi, J. Electron. Mater. 42, 1652 (2013).

    Article  Google Scholar 

  11. W. Xie, X. Tang, Y. Yan, Q. Zhang, and T.M. Tritt, J. Appl. Phys. 105, 113713 (2009).

    Article  Google Scholar 

  12. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, and X. Chen, Science 320, 634 (2008).

    Article  Google Scholar 

  13. R.F. Brebrick and A.J. Strauss, Phys. Rev. 131, 104 (1963).

    Article  Google Scholar 

  14. H. Sitter, K. Lischka, and H. Heinrich, Phys. Rev. B 16, 680 (1977).

    Article  Google Scholar 

  15. L.D. Zhao, H.J. Wu, S.Q. Hao, C.I. Wu, X.Y. Zhou, K. Biswas, J.Q. He, T.P. Hogan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Energy Environ. Sci. 6, 3346 (2013).

    Article  Google Scholar 

  16. R. Al Rahal Al Orabi, N.A. Mecholsky, J. Hwang, W. Kim, J.S. Rhyee, D. Wee, and M. Formari, Chem. Mater. 28, 376 (2015).

    Article  Google Scholar 

  17. H. Wang, Z.M. Gibbs, Y. Takagiwa, and G.J. Syyder, Energy Environ. Sci. 7, 804 (2014).

    Article  Google Scholar 

  18. B. Ananya and B. Kanishka, J. Mater. Chem. A 2, 9620 (2014).

    Article  Google Scholar 

  19. A. Soni, Z. Yanyuan, Y. Ligen, M.K.K. Aik, M.S. Dresselhaus, and Q. Xiong, Nano Lett. 12, 1203 (2012).

    Article  Google Scholar 

  20. M.M. Rashad, A.E. Shalan, M. Lira-Cantú, and M.S.A. Abdel-Mónica, Appl. Nanosci. 3, 167 (2013).

    Article  Google Scholar 

  21. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (New York: Wiley, 1986).

    Google Scholar 

  22. M. Hong, T.C. Chasapis, Z.G. Chen, L. Yang, M.G. Kanatzidis, G.J. Snyder, and J. Zou, ACS Nano 10, 4719 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqi Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zheng, S. & Chen, H. Enhanced Electronic Transport Properties of Se-Doped SnTe1−xSex Nanoparticles by Microwave-Assisted Solvothermal Method. J. Electron. Mater. 46, 2847–2853 (2017). https://doi.org/10.1007/s11664-016-5001-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5001-8

Keywords

Navigation