Skip to main content
Log in

First-Principles Study of Substitution of Cu and Au for Ni in Ni3Sn2

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of substitution of Cu and Au for Ni on the mechanical, thermodynamic and electronic properties of two different Ni3Sn2 structures are investigated by first-principles calculations. Cu atom at Ni2 site and Au atom at Ni1 site of the η phase lead to the thermodynamic stable structure. For the λ phase, Au atom can only replace the Ni1 site. Substitution causes the decrease of the polycrystalline elastic modulus and the Debye temperature. The degree of anisotropy along Z axis decreases dramatically for η phase, but it increases along Y axis for λ phase after substitution. The Ni3Sn2-based intermetallics are all ductile; the η phase is more ductile than the λ phase. The electronic density of states manifest an energy gap appearing in η phase and the effective mass of the η phase is lower than λ phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. Kim, J.W. Jang, T.Y. Lee, and K.N. Tu, J. Appl. Phys. 86, 6746 (1999).

    Article  Google Scholar 

  2. M.S. Park, S.L. Gibbons, and R. Arroyave, Acta Mater. 60, 6278 (2012).

    Article  Google Scholar 

  3. W.M. Chen, T.L. Yang, C.K. Chung, and C.R. Kao, Scr. Mater. 65, 331 (2011).

    Article  Google Scholar 

  4. C.E. Ho, R. Zheng, G.L. Luo, A.H. Lin, and C.R. Kao, J. Electron. Mater. 29, 1175 (2000).

    Article  Google Scholar 

  5. T.J. Chung, W.H. Moon, Y.G. Park, M.C. Kim, and C.K. Choi, Intermetallics 18, 1228 (2010).

    Article  Google Scholar 

  6. S. Kim and D.C. Johnson, J. Alloys Compd. 392, 105 (2005).

    Article  Google Scholar 

  7. A. Leineweber, Int. J. Mater. Res. 102, 861 (2011).

    Article  Google Scholar 

  8. Y.-L. Kim, H.-Y. Lee, and S.-W. Jang, Solid State Ionics 160, 235 (2003).

    Article  Google Scholar 

  9. J.-J. Zhang, Y.-M. Zhang, X. Zhang, and Y.-Y. Xia, J. Power Sources 167, 171 (2007).

    Article  Google Scholar 

  10. X.-F. Wei, Y.-K. Zhang, R.-C. Wang, and Y. Feng, Microelectron. Reliab. 53, 748 (2013).

    Article  Google Scholar 

  11. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprak, eds., Binary Alloy Phase Diagrams, 2nd ed. (ASM International Materials Park, 1990), p. 2863

  12. C.-W. Hwang, J.-G. Lee, K. Suganuma, and H. Mori, J. Electron. Mater. 32, 52 (2003).

    Article  Google Scholar 

  13. G.P. Vassilev, K.I. Lilova, and J.C. Gachon, Thermochim. Acta 447, 106 (2006).

    Article  Google Scholar 

  14. G. Ghosh, Metall. Mater. Trans. A 40, 4 (2009).

    Article  Google Scholar 

  15. S. Ramos de Debiaggi, C. DeluqueToro, G.F. Cabeza, and A. Fernández Guillerme, J. Alloys Compd. 576, 302 (2013).

    Article  Google Scholar 

  16. L.H. Li, W.L. Wang, and B. Wei, Comput. Mater. Sci. 99, 274 (2015).

    Article  Google Scholar 

  17. M. Barth, B. Wei, and D.M. Herlach, Mater. Sci. Eng. A 226, 770 (1997).

    Article  Google Scholar 

  18. K. Chu, Y. Sohn, and C. Moon, Scr. Mater. 109, 113 (2015).

    Article  Google Scholar 

  19. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  20. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  21. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  22. M. Methfessel and A.T. Paxton, Phys. Rev. B 40, 3616 (1986).

    Article  Google Scholar 

  23. Y. Yang, Y.Z. Li, H. Lu, C. Yu, and J.M. Chen, Comput. Mater. Sci. 65, 490 (2012).

    Article  Google Scholar 

  24. Y.L. Tian, W. Zhou, and P. Wu, J. Electron. Mater. 45, 4138 (2016).

    Article  Google Scholar 

  25. D.C. Wallace, Thermodynamics of Crystals (New York: Wiley, 1972).

    Google Scholar 

  26. O. Beckstein, J.E. Klepeis, G.L.W. Hart, and O. Pankratov, Phys. Rev. B 63, 134112 (2001).

    Article  Google Scholar 

  27. J.F. Nye, Physical Properties of Crystals (Oxford: Oxford University Press, 1985).

    Google Scholar 

  28. V.P. Oleshko and J.M. Howe, Mat Res Soc Symp Proc 791, 5 (2004).

  29. F. Korber and W. Oelson, Mitt. Kaiser Wilhelm Inst. Eisenforsch 19, 209 (1937).

    Google Scholar 

  30. R. Hultgren, P. Desai, P. Hawkins, M. Gleiser, and K.K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (Metals Park, OH: ASM, 1973), p. 1237

  31. G. Ghosh, Metall. Mater. Trans. A 30, 1481 (1999).

    Article  Google Scholar 

  32. H.S. Liu, J. Wang, and Z.P. Jin, Calphad 28, 363 (2004).

    Article  Google Scholar 

  33. P. Nash, H. Choo, and R.B. Schwarz, J. Mater. Sci. 33, 4929 (1998).

    Article  Google Scholar 

  34. B. Predel and H. Ruge, Thermochim. Acta 3, 411 (1972).

    Article  Google Scholar 

  35. H.-C. Cheng, C.-F. Yu, and W.-H. Chen, Comput. Mater. Sci. 81, 146 (2014).

    Article  Google Scholar 

  36. W. Zhou, L.J. Liu, B.L. Li, and P. Wu, Comput. Mater. Sci. 46, 921 (2009).

    Article  Google Scholar 

  37. M.A. Blanco, E. Francisco, and V. Luaña, Comput. Phys. Commun. 158, 57 (2004).

    Article  Google Scholar 

  38. J.L. Du, B. Wen, R. Melnik, and Y. Kawazoe, Intermetallics 54, 110 (2014).

    Article  Google Scholar 

  39. J.L. Du, B. Wen, R. Melnik, and Y. Kawazoe, J. Alloys Compd. 588, 96 (2014).

    Article  Google Scholar 

  40. X.D. Zhang, C.H. Ying, and Z.J. Li, Superlattices Microstruct. 52, 459 (2012).

    Article  Google Scholar 

  41. C.M. Li, S.M. Zeng, and Z.Q. Chen, Comput. Mater. Sci. 93, 210 (2014).

    Article  Google Scholar 

  42. S.F. Pugh, Lond. Edinb. Dublin Philos. Mag. J. Sci. 45, 823 (1954)

  43. J.F. Zhang, W.L. Yu, J.J. Liu, and B.S. Liu, Appl. Surf. Sci. 358, 457 (2015).

    Article  Google Scholar 

  44. J.-Q. Hu, M. Xie, J.-M. Zhang, and M.-M. Liu, Acta Phys. Sin. 62, 247102-1 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Wu, P. & Lu, Z. First-Principles Study of Substitution of Cu and Au for Ni in Ni3Sn2 . J. Electron. Mater. 46, 616–626 (2017). https://doi.org/10.1007/s11664-016-4961-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4961-z

Keywords

Navigation