Skip to main content
Log in

Crystal Structure and Thermoelectric Properties of Lightly Vanadium-Substituted Higher Manganese Silicides (Mn1−x V x )Si γ )

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

To further enhance the thermoelectric (TE) properties of higher manganese silicides (HMSs), dissipation of layered precipitates of MnSi phase as well as optimization of hole carrier concentration are critical. We have prepared a lightly vanadium-substituted solid solution of HMS, (Mn1−x V x )Si γ , by a melt growth method. A 2% substitution of manganese with vanadium is found to dissipate MnSi precipitates effectively, resulting in a substantial increase in the electrical conductivity from 280 S/cm to 706 S/cm at 800 K. The resulting TE power factor reaches 2.4 mW/K2-m at 800 K, more than twice that of the V-free sample. The total thermal conductivity did not change significantly with increasing x owing to a reduction of the lattice contribution. As a consequence, the dimensionless figure of merit zT of the melt-grown samples increased from 0.26 ± 0.01 for x = 0 to 0.59 ± 0.01 for x = 0.02 at around 800 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.K. Zaitsev, in Handbook of Thermoelectrics, vol. 25, ed. by D.M. Rowe (CRC, Boca Raton, 1995)

  2. Y. Gelbstein, Z. Dashevsky, M.P. Dariel, Phys. B 396, 16 (2007)

    Article  Google Scholar 

  3. J. Davidow, Y. Gelbstein, J. Electron. Mater. 42, 1542 (2013)

    Article  Google Scholar 

  4. K. Kirievsky, Y. Gelbstein, D. Fuks, J. Solid State Chem. 203, 247 (2013)

    Article  Google Scholar 

  5. Y. Gelbstein, N. Tal, A. Yarmek, Y. Rosenberg, M.P. Dariel, S. Ouardi, B. Balke, C. Felser, M. Köhne, J. Mater. Res. 26, 1919 (2011)

    Article  Google Scholar 

  6. Y. Sadia, L. Dinnerman, Y. Gelbstein, J. Electron. Mater. 42, 1926 (2013)

    Article  Google Scholar 

  7. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008)

    Article  Google Scholar 

  8. L.D. Ivanova, N.K. Abrikosov, E.I. Elagina, V.D. Khvostikova, Izv. Akad. Nauk SSSR. Neorg. Mater. 5, 1933 (1969)

    Google Scholar 

  9. E.I. Suvorova, V.V. Klechkovskaya, Crystallogr. Rep. 58, 854 (2013)

    Article  Google Scholar 

  10. I. Aoyama, M.I. Fedorov, V.A. Zaitsev, F.Y. Solomkin, I.S. Eremin, A.Y. Samunin, M. Mukoujima, S. Sano, T. Tsuji, Jpn. J. Appl. Phys. 44, 8562 (2005)

    Article  Google Scholar 

  11. G. Flieher, H. Vollenkle, H. Nowotny, Monatsh. Chem. 99, 2408 (1968)

    Article  Google Scholar 

  12. S. Setz, H. Nowotny, F. Benesovsky, Monatsh. Chem. 99, 2004 (1968)

    Article  Google Scholar 

  13. E.N. Nikitin, V.I. Tarasov, Fiz. Tverd. Tela. 13, 3473 (1971)

    Google Scholar 

  14. V.K. Zaitsev, V.I. Tarasov, A.A. Adilbekov, Fiz. Tverd. Tela. 17, 581 (1975)

    Google Scholar 

  15. V.I. Tarasov, E.N. Nikitin, L.N. Shumilova, Izv. Akad. Nauk SSSR. Neorg. Mater. 11, 1038 (1975)

    Google Scholar 

  16. N.L. Okamoto, T. Koyama, K. Kishida, K. Tanaka, H. Inui, Acta Mater. 57, 5036 (2009)

    Article  Google Scholar 

  17. Y. Miyazaki, Y. Saito, K. Hayashi, K. Yubuta, T. Kajitani, Adv. Sci. Tech. 74, 22 (2010)

    Article  Google Scholar 

  18. Y. Miyazaki, Y. Saito, K. Hayashi, K. Yubuta, T. Kajitani, Jpn. J. Appl. Phys. 50, 035804 (2011)

  19. Y. Kikuchi, Y. Miyazaki, Y. Saito, K. Hayashi, K. Yubuta, T. Kajitani, Jpn. J. Appl. Phys. 51, 085801 (2012)

    Google Scholar 

  20. Y. Miyazaki, D. Igarashi, K. Hayashi, T. Kajitani, K. Yubuta, Phys. Rev. B 78, 214104 (2008)

    Article  Google Scholar 

  21. V. Petricek, M. Dusek, L. Palatinus, Z. Kristallogr. 229, 345 (2014)

    Google Scholar 

  22. H.Q. Ye, S. Amelinckx, J. Solid State Chem. 61, 8 (1986)

    Article  Google Scholar 

  23. T. Inoue, S. Chikazumi, S. Nagasaki, S. Tanuma (eds.), AGNE Periodic Table (AGNE Technology Center, Tokyo, 2001)

  24. M.I. Fedorov, V.K. Zaitsev, in Thermoelectrics Handbook: Macro to Nano, vol. 31, ed. by D.M. Rowe (CRC, Boca Raton, 2006)

  25. A. Yamamoto, S. Ghodke, H. Miyazaki, M. Inukai, Y. Nishino, M. Matsunami, T. Takeuchi, Jpn. J. Appl. Phys. 55, 020301 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO) and a cooperative program of the CRDAM-IMR, Tohoku University. The authors thank Ms. Y. Oide and Ms. M. Yamashita for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzuru Miyazaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyazaki, Y., Hamada, H., Hayashi, K. et al. Crystal Structure and Thermoelectric Properties of Lightly Vanadium-Substituted Higher Manganese Silicides (Mn1−x V x )Si γ ). J. Electron. Mater. 46, 2705–2709 (2017). https://doi.org/10.1007/s11664-016-4937-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4937-z

Keywords

Navigation