Skip to main content
Log in

Ohm’s Law for a Bipolar Semiconductor: The Role of Carrier Concentration and Energy Nonequilibria

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effective linear electrical conductivity of a nondegenerate bipolar semiconductor, sandwiched between two metals, is investigated taking into account both its nonequilibrium charge carriers (both electrons and holes) and nonequilibrium temperature. We stress that even in the linear perturbative approximation both carrier concentration and energy nonequilbria arise automatically when an electrical current flows. The expression for the effective electrical conductivity is obtained and shown to depend on the electron and hole electrical conductivity, the thermal conductivity, the bandgap, charge carriers lifetimes, and both bulk and surface recombination rates. The effective electrical conductivity is equal to the classical result, i.e., the sum of the electron and hole electrical conductivities, only if the surface recombination rate at the interface is sufficiently strong or the charge carrier lifetime is sufficiently small. In this article, partial cases are considered, specifically, semiconductors with small and large thermal conductivities, semiconductors with monopolar electron and monopolar holes, strong and weak surface recombination rates, and small and large charge carrier lifetimes. Expressions for the effective electrical conductivity are obtained in all partial cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.P. Pipe, Bipolar Thermoelectric Devices (Ph.D. dissertation, Massachusetts Institute of Technology 2004), pp. 51–52.

  2. S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).

    Google Scholar 

  3. Y.G. Gurevich, G.N. Logvinov, G. Espejo, O.Y. Titov, and A. Meriuts, Semiconductors 34, 755 (2000).

    Article  Google Scholar 

  4. Y.G. Gurevich and I. Lashkevych, Int. J. Thermophys. 34, 341 (2013).

    Article  Google Scholar 

  5. G. Espejo-Lopez, O. Lyubimov, O.Y. Titov, and Y.G. Gurevich, Rev. Mex. Fis. 50, 620 (2004).

    Google Scholar 

  6. I. Volovichev, G.N. Logvinov, O.Y. Titov, and Y.G. Gurevich, J. Appl. Phys. 95, 4494 (2004).

    Article  Google Scholar 

  7. J. Sólyom, Electronic Properties, Fundamentals of the Physics of Solids, vol. 2 (Springer, Berlin, 2009), pp. 34, 521–522, 539–540.

  8. C. Hamaguchi, Basic Semiconductor Physics (Springer, Heidelberg, 2010).

    Book  Google Scholar 

  9. Y.G. Gurevich, J. Velazquez-Perez, G. Espejo-Lopez, I. Volovichev, and O.Y. Titov, J. Appl. Phys. 101, 023705 (2007).

    Article  Google Scholar 

  10. J. Chazalviel, Coulomb Screening by Mobile Charges: Applications to Materials Science Chemistry and Biology (Birkhäuser, Berlin, 1999).

    Book  Google Scholar 

  11. S. in’t Hout, J. Appl. Phys. 79, 8435 (1996).

    Article  Google Scholar 

  12. S. Molina-Valdovinos and Y. Gurevich, J. Appl. Phys. 111, 083714 (2012).

    Article  Google Scholar 

  13. P. Markowich, C. Ringhofer, and C. Schmeiser, Semiconductor Equations (Springer, Wein, 1990).

    Book  Google Scholar 

  14. Y.G. Gurevich and I. Lashkevych, Int. J. Thermophys. 35, 375 (2014).

    Article  Google Scholar 

  15. A. Anselm, Introduction to Semiconductor Theory (Mir, Moscow/Prentice-Hall, Englewood Cliffs, NJ, 1981), pp. 511–512, 515.

  16. W. Shockley, Bell Syst. Tech. J. 28, 435 (1949).

    Article  Google Scholar 

  17. J. Tauc, Photo and Thermoelectric Effects in Semiconductors (Pergamon, Oxford, 1962), pp. 74–159.

    Google Scholar 

  18. Y.G. Gurevich, O.Y. Titov, G.N. Logvinov, and O. Lyubimov, Phys. Rev. B 51, 6999 (1995).

    Article  Google Scholar 

  19. W. Shockley and W. Read, Phys. Rev. 87, 835 (1952).

    Article  Google Scholar 

  20. I. Volovichev, J. Velazquez-Perez, and Y.G. Gurevich, Solid State Electron. 52, 1703 (2008).

    Article  Google Scholar 

  21. O.Y. Titov, J. Giraldo, and Y.G. Gurevich, Appl. Phys. Lett. 80, 3108 (2002).

    Article  Google Scholar 

  22. I. Lashkevych, O.Y. Titov, and Y.G. Gurevich, Semicond. Sci. Technol. 27, 055014 (2012).

    Article  Google Scholar 

  23. H. Goldsmid, Introduction to Thermoelectricity (Springer, Berlin, 2010).

    Book  Google Scholar 

  24. Y.G. Gurevich, G.N. Logvinov, O.Y. Titov, and J. Giraldo, Surf. Rev. Lett. 9, 1703 (2002).

    Article  Google Scholar 

  25. V.F. Gantmakher and I.B. Levinson, Carrier Scattering in Metals and Semiconductors, Modern Problems in Condensed Matter Science, vol. 19 (North-Holland, Amsterdam, 1987).

    Google Scholar 

  26. I. Lashkevych and Y.G. Gurevich, Int. J. Thermophys. 37, 1 (2016).

    Article  Google Scholar 

  27. Y.G. Gurevich and I. Lashkevych, 2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) (2014), pp. 1–4. doi:10.1109/ICEEE.2014.6978262.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Lashkevych.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lashkevych, I., Titov, O.Y. & Gurevich, Y.G. Ohm’s Law for a Bipolar Semiconductor: The Role of Carrier Concentration and Energy Nonequilibria. J. Electron. Mater. 46, 585–595 (2017). https://doi.org/10.1007/s11664-016-4927-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4927-1

Keywords

Navigation