Skip to main content
Log in

Dielectric Properties of Reduced Graphene Oxide/Copper Phthalocyanine Nanocomposites Fabricated Through ππ Interaction

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Reduced graphene oxide/copper phthalocyanine nanocomposites are successfully prepared through a simple and effective two-step method, involving preferential reduction of graphene oxide and followed by self-assembly with copper phthalocyanine. The results of photographs, ultraviolet visible, x-ray diffraction, x-ray photoelectron spectroscopy, and scanning electron microscopy show that the in situ blending method can effectively facilitate graphene sheets to disperse homogenously in the copper phthalocyanine matrix through ππ interactions. As a result, the reduction of graphene oxide and restoration of the sp 2 carbon sites in graphene can enhance the dielectric properties and alternating current conductivity of copper phthalocyanine effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.X. Guo, M. Wang, T. Chen, X.W. Lou, and C.M. Li, Adv. Energy Mater. 1, 736 (2011).

    Article  Google Scholar 

  2. X. Huang, X. Qi, F. Boey, and H. Zhang, Chem. Soc. Rev. 41, 666 (2012).

    Article  Google Scholar 

  3. L. Yan, Y. Zheng, F. Zhao, S. Li, X. Gao, B. Xu, P.S. Weiss, and Y. Zhao, Chem. Soc. Rev. 41, 97 (2012).

    Article  Google Scholar 

  4. D. Krishnan, F. Kim, J. Luo, R. Cruz-Silva, L.J. Cote, H.D. Jang, and J. Huang, Nano Today 7, 137 (2012).

    Article  Google Scholar 

  5. R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, Nat. Mater. 14, 271 (2015).

    Article  Google Scholar 

  6. K.R. Nemade and S.A. Waghuley, J. Electron. Mater. 42, 2857 (2013).

    Article  Google Scholar 

  7. C.G. Liu, Z.N. Yu, D. Neff, A. Zhamu, and B.Z. Jang, Nano Lett. 10, 4863 (2010).

    Article  Google Scholar 

  8. B.F. Machadoab and P. Serp, Catal. Sci. Technol. 2, 54 (2012).

    Article  Google Scholar 

  9. D. Li, M.B. Muller, S. Gilje, R.B. Kaner, and G.G. Wallace, Nat. Nanotechnol. 3, 101 (2008).

    Article  Google Scholar 

  10. A.L. Higginbotham, J.R. Lomeda, A.B. Morgan, and J.M. Tour, ACS Appl. Mater. Interfaces 1, 2256 (2009).

    Article  Google Scholar 

  11. D.D.L. Chung, J. Mater. Sci. 51, 554 (2016).

    Article  Google Scholar 

  12. A. Lerf, H. He, M. Forster, and J. Klinowski, J. Phys. Chem. B 102, 4477 (1998).

    Article  Google Scholar 

  13. D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010).

    Article  Google Scholar 

  14. F.M. Uhl and C. Wilkie, Polym. Degrad. Stab. 84, 215 (2004).

    Article  Google Scholar 

  15. S. Stankovich, R. Piner, X. Chen, N. Wu, S. Nguyen, and R. Ruoff, J. Mater. Chem. 16, 155 (2006).

    Article  Google Scholar 

  16. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, and R.S. Ruoff, Nature 448, 457 (2007).

    Article  Google Scholar 

  17. R. Rozada, J.I. Paredes, M.J. López, S. Villar-Rodil, I. Cabria, J.A. Alonso, A. Martínez-Alonso, and J.M.D. Tascón, Nanoscale 7, 2374 (2015).

    Article  Google Scholar 

  18. J. Gao, C.Y. Liu, L. Miao, X.Y. Wang, and Y. Chen, J. Electron. Mater. 45, 1290 (2016).

    Article  Google Scholar 

  19. P. Fan, L. Wang, J.T. Yang, F. Chen, and M.Q. Zhong, Nanotechnology 23, 365702 (2012).

    Article  Google Scholar 

  20. Z.C. Wang, W. Yang, and X.B. Liu, J. Polym. Res. 21, 358 (2014).

    Article  Google Scholar 

  21. G. Torre, C.G. Claessens, and T. Torres, Chem. Commun. 20, 2000 (2007).

    Article  Google Scholar 

  22. T.C. Gomes, R.F. de Oliveira, É.M. Lopes, M.S. Klem, D.L.S. Agostini, C.J.L. Constantino, and N. Alves, J. Mater. Sci. 50, 2122 (2015).

    Article  Google Scholar 

  23. J.A. Gerbec, D. Magana, A. Washington, and G.F. Strouse, J. Am. Chem. Soc. 127, 15791 (2005).

    Article  Google Scholar 

  24. X.L. Yang, Y.J. Lei, J.C. Zhong, R. Zhao, and X.B. Liu, J. Appl. Polym. Sci. 119, 882 (2011).

    Article  Google Scholar 

  25. J. Yang, H.L. Tang, Y.Q. Zhan, H. Guo, R. Zhao, and X.B. Liu, Mater. Lett. 72, 42 (2012).

    Article  Google Scholar 

  26. H. Dai, S.P. Zhang, G.F. Xua, Y.R. Peng, L.S. Gong, X.H. Lia, Y.L. Lia, Y.Y. Lin, and G.N. Chen, RSC Adv. 4, 58226 (2014).

    Article  Google Scholar 

  27. X. Zhao, R. Zhao, X.L. Yang, J.C. Zhong, and X.B. Liu, J. Electron. Mater. 40, 2166 (2011).

    Article  Google Scholar 

  28. Z.C. Wang, R.B. Wei, and X.B. Liu, RSC Adv. 5, 88306 (2015).

    Article  Google Scholar 

  29. G.M. Tsangaris, G.C. Psarras, and N. Kouloumbi, J. Mater. Sci. 33, 2027 (1998).

    Article  Google Scholar 

  30. J.H. Yang, Y.J. Gao, W. Zhang, P. Tang, J. Tan, A.H. Lu, and D. Ma, J. Phys. Chem. C 117, 3785 (2013).

    Article  Google Scholar 

  31. T.M. Keller, J. Polym. Sci. Polym. Chem. 26, 3199 (1988).

    Article  Google Scholar 

  32. J.I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J.M.D. Tascón, Langmuir 24, 10560 (2008).

    Article  Google Scholar 

  33. L. Xu, G. Xiao, C. Chen, R. Li, Y. Mai, G. Sun, and D. Yan, J. Mater. Chem. A 3, 7498 (2015).

    Article  Google Scholar 

  34. S.J. Park, K.S. Lee, G. Bozoklu, W.W. Cai, S.T. Nguyen, and R.S. Ruoff, ACS Nano 2, 572 (2008).

    Article  Google Scholar 

  35. Z.C. Wang, W. Yang, J.J. Wei, F.B. Meng, and X.B. Liu, Mater. Lett. 123, 6 (2014).

    Article  Google Scholar 

  36. M.S. Alhassan, S. Qutubuddin, A.D. Schiraldi, T. Agag, and H. Ishida, Eur. Polym. J. 49, 3825 (2013).

    Article  Google Scholar 

  37. Z.M. Dang, L. Wang, Y. Yin, Q. Zhang, and Q.Q. Lei, Adv. Mater. 19, 852 (2007).

    Article  Google Scholar 

  38. F. He, S. Lau, H.L. Chan, and J.T. Fan, Adv. Mater. 21, 710 (2009).

    Article  Google Scholar 

  39. D.R. Wang, X.M. Zhang, J.W. Zha, J. Zhao, Z.M. Dang, and G.H. Hu, Polymer 54, 1916 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports from NSFC (51373028, 51403029), UESTC (A03013023601012), South Wisdom Valley Innovative Research Team Program and Ningbo Major (key) Science and Technology Research Plan (2013B06011) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renbo Wei or Xiaobo Liu.

Additional information

Zicheng Wang and Renbo Wei contribute equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wei, R. & Liu, X. Dielectric Properties of Reduced Graphene Oxide/Copper Phthalocyanine Nanocomposites Fabricated Through ππ Interaction. J. Electron. Mater. 46, 488–496 (2017). https://doi.org/10.1007/s11664-016-4916-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4916-4

Keywords

Navigation