Skip to main content
Log in

Structural Stabilities and Elastic Thermodynamic Properties of SrTe Compound and SrTe1−x Ca x Alloy Under High Pressure

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of pressure on the structural, elastic, and thermodynamic properties of SrTe in both B1 (rocksalt) and B2 (CsCl-type) phases and the SrTe1−x Ca x alloys with Ca dopant concentrations at x = 0.16667, 0.20, 0.33333, 0.42857, 0.44444 and 0.50 have been investigated using the two new gradient-corrected functional developed by Perdew, J.P.; Burke, K.; Ernzerhof named Density-Gradient Expansion for Exchange in Solids (PBEsol) and generalized Wu–Cohen (WC), in a significant range of pressure from 0 GPa to 30 GPa. The structure parameters, elastic stiffness constants c ij , the bulk modulus (B), Kleinman parameter (\( \xi \)), shear anisotropies A shear are also determined. Furthermore, as reported in this study, the aggregate elastic modulus (B, G, E), Poisson’s ratio (ν) and the Lame’s coefficients (λ) are estimated. On the other hand, the ductility, brittleness, longitudinal, transverse sound velocities and the Debye temperature ΘD(T) are also obtained. Importantly, our results are in reasonable agreement with the available theoretical and experimental data. To the best of our knowledge, this is the first study of the effect of the composition on the properties of the SrTe1−x Ca x alloys which may encourage other works for the confirmation of the reported results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Nakanishi, T. Ito, Y. Hatanaka, and G. Shimaoka, Appl. Surf. Sci. 66, 515 (1992).

    Google Scholar 

  2. L. Abtin and G. Springholz, Appl. Phys. Lett. 93, 163102 (2008).

    Article  Google Scholar 

  3. P.D. Rack, J.S. Lewis, P.H. Holloway, W. Park, B.K. Wagner, and C.J. Summers, J. Appl. Phys. 84, 3676 (1998).

    Article  Google Scholar 

  4. S. Asano, N. Yamashita, and Y. Nakao, Phys. Status Solidi B 89, 663 (1978).

    Article  Google Scholar 

  5. H.G. Zimmer, H. Winzen, and K. Syassen, Phys. Rev. B 32, 4066 (1985).

    Article  Google Scholar 

  6. B.S. Arya, M. Aynyas, and S.P. Sanyal, Indian J. Phys. 83, 153 (2009).

    Article  Google Scholar 

  7. X. Yang, A. Hao, J. Yang, Y. Han, G. Peng, C. Gao, and G. Zou, Chin. Phys. Lett. 25, 1807 (2008).

    Article  Google Scholar 

  8. I.B. ShameemBanu, M. Rajagopalan, B. Palanivel, G. Kalpana, and P. Shenbagaraman, J. Low Temp. Phys. 112, 211 (1998).

    Article  Google Scholar 

  9. S. Labidi, H. Meradji, S. Ghemid, M. Labidi, and F. El Haj Hassan, J. Phys. Condens. Matter 20, 445213 (2008).

    Article  Google Scholar 

  10. R. Khenata, H. Baltache, M. Rerat, M. Driz, M. Sahnoun, B. Bouhafs, and B. Abbar, Phys. B 339, 208 (2003).

    Article  Google Scholar 

  11. D. Rached, M. Rabah, N. Benkhettou, B. Soudini, and H. Abid, Phys. Status Solidi B 241, 2529 (2004).

    Article  Google Scholar 

  12. I.Y. Kang, Y.S. Kim, YCh Chung, H. Kima, D.S. Kim, and J.J. Kim, J. Ceram. Proc. Res. 3, 171 (2002).

    Google Scholar 

  13. Y. Cheng, L.Y. Lu, O.H. Jia, and X.R. Chen, Chin. Phys. B 17, 1355 (2008).

    Article  Google Scholar 

  14. P. Cortona, Int. J. Quantum Chem. 99, 828 (2004).

    Article  Google Scholar 

  15. A. Hasegawa and A. Yanase, J. Phys. C Solid State Phys. 13, 1995 (1980).

    Article  Google Scholar 

  16. P.K. Jha, U.K. Sakalle, and S.P. Sanya, J. Phys. Chem. Solids 59, 1633 (1998).

    Article  Google Scholar 

  17. M. Dadsetani and A. Pourghazi, Phys. Rev. B 73, 195102 (2006).

    Article  Google Scholar 

  18. K. Syassen, N.E. Christensen, H. Winzen, K. Fischer, and J. Evers, Phys. Rev. B 35, 4052 (1986).

    Article  Google Scholar 

  19. S. Labidi, H. Meradji, M. Labidi, S. Ghemid, S. Drablia, and F. El Haj Hassan, Phys. Proc. 2, 1205 (2009).

    Article  Google Scholar 

  20. K.M. Wong, S.M. Alay-e-Abbas, A. Shaukat, Y. Fang, and Y. Lei, J. Appl. Phys. 113, 014304 (2013).

    Article  Google Scholar 

  21. K.M. Wong, S.M. Alay-e-Abbas, Y. Fang, A. Shaukat, and Y. Lei, J. Appl. Phys. 114, 034901 (2013).

    Article  Google Scholar 

  22. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, J. Phys. Condens. Matter 14, 2717 (2002).

    Article  Google Scholar 

  23. A. Seidl, A. Gorling, P. Vogl, J.A. Majewski, and M. Levy, Phys. Rev. B 53, 3764 (1996).

    Article  Google Scholar 

  24. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).

    Article  Google Scholar 

  25. Z. Wu and R.E. Cohen, Phys. Rev. B 73, 235116 (2006).

    Article  Google Scholar 

  26. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Article  Google Scholar 

  27. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  28. L. Shi, Y. Duan, X. Yang, and L. Qin, Phys. B 406, 181 (2011).

    Article  Google Scholar 

  29. P. Cortona, Int. J. Quantum Chem. 99, 828 (2004).

    Article  Google Scholar 

  30. D. Varshney, N. Kaurav, R. Kinge, and R.K. Singh, Comput. Mater. Sci. 41, 537 (2008).

    Article  Google Scholar 

  31. P. Bhardwaj, S. Singh, and N.K. Gaur, J. Mol. Struct THEOCHEM 897, 95 (2009).

    Article  Google Scholar 

  32. J. Heyd, J.E. Peralta, G.E. Scuseria, and R.L. Martin, J. Chem. Phys. 123, 174101 (2005).

    Article  Google Scholar 

  33. L. Vegard, Z. Phys. 5, 17 (1921).

    Article  Google Scholar 

  34. J. Jobst, D. Hommel, U. Lunz, T. Gerhard, and G. Landwehr, Appl. Phys. Lett. 69, 97 (1996).

    Article  Google Scholar 

  35. F. El Haj Hassan, Phys. Status Solidi B 242, 909 (2005).

    Article  Google Scholar 

  36. W.J. Ding, J.X. Yi, P. Chen, D.L. Li, L.M. Peng, and B.Y. Tang, Solid State Sci. 14, 555 (2012).

    Article  Google Scholar 

  37. G.V. Sinko, Phys. Rev. B 77, 104118 (2008).

    Article  Google Scholar 

  38. A.K. Srivastava, N. Danish, and A. Mundari, Comput. Mater. Sci. 67, 384 (2013).

    Article  Google Scholar 

  39. G.K. Strub and W.A. Harrison, Phys. Rev. B 39, 10325 (1989).

    Article  Google Scholar 

  40. P. Jha, U. Sakalle, and S.P. Sanyal, J. Phys. Chem Solids, 163759 (1998).

  41. R. Hill, Proc. Phys. Soc. 65, 350 (1952).

    Article  Google Scholar 

  42. T.L. Hill, An Introduction to Statistical Thermodynamics (New York: Dover, 1986).

    Google Scholar 

  43. E. Schreiber, O.L. Anderson, and N. Soga, Elastic Constants and Their Measurement (New York: McGraw-Hill, 1973).

    Google Scholar 

  44. S.F. Pugh, Philos. Mag. 45, 823 (1954).

    Article  Google Scholar 

  45. Y. Cao, J.C. Zhu, Y. Liu, Z.S. Nong, and Z.H. Lai, Comput. Mater. Sci. 77, 208 (2013).

    Article  Google Scholar 

  46. K.B. Panda and K.S. Ravi, Chandran. Comput. Mater. Sci. 35, 134 (2006).

    Article  Google Scholar 

  47. K. Kim, W.R.L. Lambrecht, and B. Segal, Phys. Rev. B 50, 1502 (1994).

    Article  Google Scholar 

  48. W.A. Harrison, Electronic Structure and Properties of Solids (New York: Dover, 1989).

    Google Scholar 

  49. L. Kleinman, Phys. Rev. 128, 2614 (1962).

    Article  Google Scholar 

  50. I. Johnston, G. Keeler, R. Rollins, and S. Spicklemire, Solids State Physics Simulations (New York: Wiley, 1996).

    Google Scholar 

  51. E. Schreiber, O.L. Anderson, and N. Soga, Elastic Constants and Their Measurements (New York: McGraw-Hill, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatma Saad Saoud or Khenata Rabah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saoud, F.S., Rabah, K., Bouhemadou, . et al. Structural Stabilities and Elastic Thermodynamic Properties of SrTe Compound and SrTe1−x Ca x Alloy Under High Pressure. J. Electron. Mater. 46, 766–774 (2017). https://doi.org/10.1007/s11664-016-4830-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4830-9

Keywords

Navigation