Skip to main content
Log in

Fabrication of GaN Microporous Structure at a GaN/Sapphire Interface as the Template for Thick-Film GaN Separation Grown by HVPE

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, a microporous structure at the GaN/sapphire interface has been obtained by an electrochemical etching method via a selective etching progress using an as-grown GaN/sapphire wafer grown by metal organic chemical vapor deposition. The as-prepared GaN interfacial microporous structure has been used as a template for the following growth of thick-film GaN crystal by hydride vapor phase epitaxy (HVPE), facilitating the fabrication of a free-standing GaN substrate detached from a sapphire substrate. The evolution of the interfacial microporous structure has been investigated by varying the etching voltages and time, and the formation mechanism of interfacial microporous structure has been discussed in detail as well. Appropriate interfacial microporous structure is beneficial for separating the thick GaN crystal grown by HVPE from sapphire during the cooling down process. The separation that occurred at the place of interfacial microporous can be attributed to the large thermal strain between GaN and sapphire. This work realized the fabrication of a free-standing GaN substrate with high crystal quality and nearly no residual strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Zhong, H. Chen, G. Saraf, Y. Lu, C.K. Choi, J.J. Song, D.M. Mackie, and H. Shen, Appl. Phys. Lett. 90, 203515 (2007).

    Article  Google Scholar 

  2. E. Richter, M. Grunder, C. Netzel, M. Weyers, and G. Trankle, J. Cryst. Growth 350, 89 (2012).

    Article  Google Scholar 

  3. S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).

    Article  Google Scholar 

  4. E. Richter, U. Zeimer, S. Hagedorn, M. Wagner, F. Brunner, M. Weyers, and G. Trankle, J. Cryst. Growth 312, 2537 (2010).

    Article  Google Scholar 

  5. Y. Fu, Y.T. Moon, F. Yun, U. Ozgur, J.Q. Xie, S. Dogan, H. Morkoc, C.K. Inoki, T.S. Kuan, L. Zhou, and D.J. Smith, Appl. Phys. Lett. 86, 043108 (2005).

    Article  Google Scholar 

  6. C. Hennig, E. Richter, M. Weyers, and G. Trankle, J. Cryst. Growth 310, 911 (2008).

    Article  Google Scholar 

  7. B. Lucznik, B. Pastuszka, I. Grzegory, M. Bockowski, G. Kamler, E. Litwin-Staszewska, and S. Porowski, J. Cryst. Growth 281, 38 (2005).

    Article  Google Scholar 

  8. W.S. Wong, T. Sands, and N.W. Cheung, Appl. Phys. Lett. 72, 599 (1998).

    Article  Google Scholar 

  9. R. Delmdahl, R. Pätzel, J. Brune, R. Senczuk, C. Goßler, R. Moser, M. Kunzer, and U.T. Schwarz, Phys. Status Solidi A 209, 2653 (2012).

    Article  Google Scholar 

  10. K. Motoki, T. Okahisa, N. Matsumoto, M. Matsushima, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, T. Hirano, M. Nakayama, S. Nakahata, M. Ueno, D. Hara, Y. Kumagai, A. Koukitz, and H. Seki, Jpn. J. Appl. Phys. 40, L140 (2001).

    Article  Google Scholar 

  11. Y. Oshima, T. Eri, M. Shibata, H. Sunakawa, K. Kobayashi, T. Ichihashi, and A. Usui, Jpn. J. Appl. Phys. 42, L1 (2003).

    Article  Google Scholar 

  12. M. Amilusik, T. Sochacki, B. Łucznik, M. Boćkowski, B. Sadovyi, A. Presz, I. Dzięcielewski, and I. Grzegory, J. Cryst. Growth 380, 99 (2013).

    Article  Google Scholar 

  13. C. Hemmingsson and G. Pozina, J. Cryst. Growth 366, 61 (2013).

    Article  Google Scholar 

  14. L. Zhang, Y. Dai, Y. Wu, Y. Shao, Y. Tian, Q. Huo, X. Hao, Y. Shen, and Z. Hua, Cryst. Eng. Comm. 16, 9063 (2014).

    Article  Google Scholar 

  15. L. Zhang, Y. Shao, X. Hao, Y. Wu, H. Zhang, S. Qu, X. Chen, and X. Xu, Cryst. Eng. Comm. 13, 5001 (2011).

    Article  Google Scholar 

  16. M.G. Mynbaeva and D.V. Tsvetkov, Inst. Phys. Conf. Ser. 155, 365 (1997).

    Google Scholar 

  17. Y. Zhang, Q. Sun, B. Leung, J. Simon, M.L. Lee, and J. Han, Nanotechnology 22, 045603 (2011).

    Article  Google Scholar 

  18. H. Xiao, J. Cui, D. Cao, Q. Gao, J. Liu, and J. Ma, Mater. Lett. 145, 304 (2015).

    Article  Google Scholar 

  19. J. Park, K.M. Song, S.R. Jeon, J.H. Baek, and S.W. Ryu, Appl. Phys. Lett. 94, 221907 (2009).

    Article  Google Scholar 

  20. S. Huang, Y. Zhang, B. Leung, G. Yuan, G. Wang, H. Jiang, Y. Fan, Q. Sun, J. Wang, K. Xu, J. Han, and A.C.S. Appl, Mater. Interfaces 5, 11074 (2013).

    Article  Google Scholar 

  21. L.W. Jang, D.W. Jeon, A.Y. Polyakov, H.S. Cho, J.H. Yun, D.S. Jo, J.W. Ju, J.H. Baek, and I.H. Lee, Appl. Phys. Express 6, 061001 (2013).

    Article  Google Scholar 

  22. D. Chen, H. Xiao, and J. Han, J. Appl. Phys. 112, 064303 (2012).

    Article  Google Scholar 

  23. Y. Kumagai, Y. Enatsu, M. Ishizuki, Y. Kubota, J. Tajima, T. Nagashima, H. Murakami, K. Takada, and A. Koukitu, J. Cryst. Growth 312, 2530 (2010).

    Article  Google Scholar 

  24. M.I.J. Beale, J.D. Benjamin, M.J. Uren, N.G. Chew, and A.G. Cullis, J. Cryst. Growth 73, 622 (1985).

    Article  Google Scholar 

  25. J.N. Chazaviel, R.B. Wehrspohn, and F. Ozanam, Mater. Sci. Eng. 69, 1 (2000).

    Article  Google Scholar 

  26. S. Keller, B.P. Keller, Y.F. Wu, B. Heying, D. Kapolnek, J.S. Speck, U.K. Mishra, and S.P. DenBaars, Appl. Phys. Lett. 68, 1525 (1996).

    Article  Google Scholar 

  27. X.H. Wu, L.M. Brown, D. Kapolnek, S. Keller, B. Keller, S.P. DenBaars, and J.S. Speck, J. Appl. Phys. 80, 3228 (1996).

    Article  Google Scholar 

  28. S. Tripathy, S.J. Chua, P. Chen, and Z.L. Miao, J. Appl. Phys. 92, 3503 (2002).

    Article  Google Scholar 

  29. Y. Dai, Y. Shao, Y. Wu, X. Hao, P. Zhang, X. Cao, L. Zhang, Y. Tian, and H. Zhang, RSC Adv. 4, 21504 (2014).

    Article  Google Scholar 

  30. S. Kim, H. Lee, S. Kim, S. Choi, J. Koo, and J. Chang, J. Cryst. Growth 398, 13 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Tianjin, China (15JCQNJC03700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianli Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Cheng, H., Zhang, S. et al. Fabrication of GaN Microporous Structure at a GaN/Sapphire Interface as the Template for Thick-Film GaN Separation Grown by HVPE. J. Electron. Mater. 45, 4782–4789 (2016). https://doi.org/10.1007/s11664-016-4726-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4726-8

Keywords

Navigation