Skip to main content
Log in

Effect of Oxidation Temperature on Physical and Electrical Properties of Sm2O3 Thin-Film Gate Oxide on Si Substrate

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermal oxidation of 150-nm sputtered pure samarium metal film on silicon substrate has been carried out in oxygen ambient at various temperatures (600°C to 900°C) for 15 min and the effect of the oxidation temperature on the structural, chemical, and electrical properties of the resulting Sm2O3 layers investigated. The crystallinity of the Sm2O3 films and the existence of an interfacial layer were evaluated by x-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR) spectroscopy, and Raman analysis. The crystallite size and microstrain of Sm2O3 were estimated by Williamson–Hall (W–H) plot analysis, with comparison of the former with the crystallite size of Sm2O3 as calculated using the Scherrer equation. High-resolution transmission electron microscopy (HRTEM) with energy-dispersive x-ray (EDX) spectroscopy analysis was carried out to investigate the cross-sectional morphology and chemical distribution of selected regions. The activation energy or growth rate of each stacked layer was calculated from Arrhenius plots. The surface roughness and topography of the Sm2O3 layers were examined by atomic force microscopy (AFM) analysis. A physical model based on semipolycrystalline nature of the interfacial layer is suggested and explained. Results supporting such a model were obtained by FTIR, XRD, Raman, EDX, and HRTEM analyses. Electrical characterization revealed that oxidation temperature at 700°C yielded the highest breakdown voltage, lowest leakage current density, and highest barrier height value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Casady and R.W. Johnson, Solid-State Electron. 39, 1409 (1996).

    Article  Google Scholar 

  2. A. Elford and P.A. Mawby, Microelectron. J. 30, 527 (1999).

    Article  Google Scholar 

  3. P.R. Chalker, Thin Solid Films 343, 616 (1999).

    Article  Google Scholar 

  4. Y.H. Wong and K.Y. Cheong, J. Mater Sci-Mater. El. 21, 980 (2010).

    Article  Google Scholar 

  5. S.I. Ohmi, C. Kobayashi, K. Aizawa, S.I. Yamamoto, E. Tokumitsu, H. Ishiwara, and H. Iwai, in 31st European Solid-State Device Research Conference, ESSDERC (2001) 235.

  6. H.D. Kim and Y. Roh, J. Korean Phys. Soc. 49, 755 (2006).

    Google Scholar 

  7. V.V. Atuchin, V.N. Kruchinin, Y.H. Wong, and K.Y. Cheong, Mater. Lett. 105, 72 (2013).

    Article  Google Scholar 

  8. Y.H. Wong and K.Y. Cheong, Ceram. Int. 39, 475 (2013).

    Article  Google Scholar 

  9. Y.H. Wong and K.Y. Cheong, Mater. Chem. Phys. 136, 624 (2012).

    Article  Google Scholar 

  10. Y.H. Wong and K.Y. Cheong, J. Electrochem. Soc. 159, 293 (2012).

    Article  Google Scholar 

  11. Y.H. Wong and K.Y. Cheong, Thin Solid Films 520, 6822 (2012).

    Article  Google Scholar 

  12. Y.H. Wong and K.Y. Cheong, J. Alloy. Compd. 509, 8728 (2011).

    Article  Google Scholar 

  13. C.C. Chew, M.S. Gorji, K.H. Goh, C.G. Tan, S. Ramesh, and Y.H. Wong, Appl. Phys. A-Mater. 122, 66 (2016).

    Article  Google Scholar 

  14. L. Shi, Y. Yuan, X.F. Liang, Y.D. Xia, J. Yin, and Z.G. Liu, Appl. Surf. Sci. 253, 3731 (2007).

    Article  Google Scholar 

  15. J. Paivasaari, M. Putkonen, and L. Niinisto, Thin Solid Films 472, 275 (2005).

    Article  Google Scholar 

  16. S.J. Jo, J.S. Ha, N.K. Park, D.K. Kang, and B.H. Kim, Thin Solid Films 513, 253 (2006).

    Article  Google Scholar 

  17. G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys. 89, 5243 (2001).

    Article  Google Scholar 

  18. M. Houssa, L. Pantisano, L.A. Ragnarsson, R. Degraeve, T. Schram, G. Pourtois, S. De Gendt, G. Groeseneken, and M.M. Heyns, Mater. Sci. Eng. R 51, 37 (2006).

    Article  Google Scholar 

  19. T.M. Pan, W.T. Chang, and F.C. Chiu, Appl. Surf. Sci. 257, 3964 (2011).

    Article  Google Scholar 

  20. W.C. Chin, K.Y. Cheong, and Z. Hassan, Mater. Sci. Semicond. Proc. 13, 303 (2010).

    Article  Google Scholar 

  21. K.H. Goh, A.S.M.A. Haseeb, and Y.H. Wong, Thin Solid Films 606, 80 (2016).

    Article  Google Scholar 

  22. T.M. Pan and C.C. Huang, Appl. Surf. Sci. 256, 7186 (2010).

    Article  Google Scholar 

  23. F.H. Chen, M.N. Hung, J.F. Yang, S.Y. Kuo, J.L. Her, Y.H. Matsuda, and T.M. Pan, J Phys. Chem. Solids 74, 570 (2013).

    Article  Google Scholar 

  24. C.H. Kao, H. Chen, K.S. Chen, C.Y. Huang, C.H. Huang, J.C. Ou, C.J. Lin, K.M. Lin, L.T. Kuo, in 10th IEEE International Conference on Solid-State and Integrated Circuit Technology Proceedings (2010) p. 1425.

  25. X.Y. Zhao, X.L. Wang, H. Lin, and Z.Q. Wang, Phys. B 403, 1787 (2008).

    Article  Google Scholar 

  26. K. Shalini and S.A. Shivashankar, Bull. Mater. Sci. 28, 49 (2005).

    Article  Google Scholar 

  27. C. Constantinescu, V. Ion, A.C. Galca, and M. Dinescu, Thin Solid Films 520, 6393 (2012).

    Article  Google Scholar 

  28. A.A. Dakhel, J. Alloy. Compd. 365, 233 (2004).

    Article  Google Scholar 

  29. V.A. Rozhkov, A.Y. Trusova, and I.G. Berezhnoy, Thin Solid Films 325, 151 (1998).

    Article  Google Scholar 

  30. V.A. Rozhkov, V.P. Goncharov, A.Y. Trusova, in Proceedings of the 1995 IEEE 5th International Conference on Conduction and Breakdown in Solid Dielectrics (1995) p. 552.

  31. S.Y. Huang, T.C. Chang, M.C. Chen, S.C. Chen, H.P. Lo, H.C. Huang, D.S. Gan, S.M. Sze, and M.J. Tsai, Solid-State Electron. 63, 189 (2011).

    Article  Google Scholar 

  32. S. Kaya, E. Yilmaz, A. Kahraman, and H. Karacali, Nucl. Instrum. Meth. B 358, 188 (2015).

    Article  Google Scholar 

  33. A.A. Dakhel, J. Alloy. Compd. 422, 1 (2006).

    Article  Google Scholar 

  34. X.H. Cheng, D.P. Xu, Z.R. Song, D.W. He, Y.H. Yu, Q.T. Zhao, and D.S. Shen, Appl. Surf. Sci. 256, 921 (2009).

    Article  Google Scholar 

  35. Y.P. Wu, S.F. Zhu, T.W. Liu, F.F. Li, Y.Z. Zhang, Y.C. Rao, and Y.B. Zhang, Appl. Surf. Sci. 307, 615 (2014).

    Article  Google Scholar 

  36. M.A. Pampillon, P.C. Feijoo, E.S. Andres, M.L. Lucia, A. del Prado, and M. Toledano-Luque, Microelectron. Eng. 88, 2991 (2011).

    Article  Google Scholar 

  37. K. Venkateswarlu, A.C. Bose, and N. Rameshbabu, Phys. B 405, 4256 (2010).

    Article  Google Scholar 

  38. K. Santra, P. Chatterjee, and S.P. Sen Gupta. Bull. Mater. Sci. 25, 251 (2002).

    Article  Google Scholar 

  39. S. Vives, E. Gaffet, and C. Meunier, Mater. Sci. Eng. A-Str. 366, 229 (2004).

    Article  Google Scholar 

  40. V.D. Mote, Y. Purushotham, and B.N. Dole, Cryst. Res. Technol. 46, 705 (2011).

    Article  Google Scholar 

  41. E.J. Mittemeijer and U. Welzel, Z. Kristallogr. 223, 552 (2008).

    Article  Google Scholar 

  42. M. Herrmann, U. Forter-Barth, P.B. Kempa, and H. Krober, Chem. Eng. Technol. 32, 1067 (2009).

    Article  Google Scholar 

  43. A.K. Zak, W.H.A. Majid, M.E. Abrishami, and R. Yousefi, Solid State Sci. 13, 251 (2011).

    Article  Google Scholar 

  44. S. Miyazaki, Appl. Surf. Sci. 190, 66 (2002).

    Article  Google Scholar 

  45. G.A.M. Hussein, D.J. Buttrey, P. DeSanto, A.A. Abd-Elgaber, H. Roshdy, and A.Y.Z. Myhoub, Thermochim. Acta 402, 27 (2003).

    Article  Google Scholar 

  46. M.A. Ruiz-Gomez, C. Gomez-Solis, M.E. Zarazua-Morin, L.M. Tones-Martinez, I. Juarez-Ramirez, D. Sanchez-Martinez, and M.Z. Figueroa-Torres, Ceram. Int. 40, 1893 (2014).

    Article  Google Scholar 

  47. H.M. Ismail, Colloids Surfaces A 97, 247 (1995).

    Article  Google Scholar 

  48. E. Kusrini, R. Arbianti, N. Sofyan, M.A.A. Abdullah, and F. Andriani, Spectrochim. Acta A 120, 77 (2014).

    Article  Google Scholar 

  49. S. Jiang, J. Liu, C.L. Lin, X.D. Li, and Y.C. Li, J. Appl. Phys. 113, 113502 (2013).

    Article  Google Scholar 

  50. J. Mandal, B.J. Sarkar, A.K. Deb, and P.K. Chakrabarti, J. Magn. Magn. Mater. 371, 35 (2014).

    Article  Google Scholar 

  51. T. Hongo, K.I. Kondo, K.G. Nakamura, and T. Atou, J. Mater. Sci. 42, 2582 (2007).

    Article  Google Scholar 

  52. X.Y. Zhao, X.L. Wang, H. Lin, and Z.Q. Wang, Mater. Sci. Semicond. Proc. 33, 42 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This project is funded by University of Malaya Research Grant (UMRG) Nos. RP013D-13AET and RP024A-13AET, Fundamental Research Grant Scheme (FRGS) Grant No. FP010-2013B, and Postgraduate Research Grant (PPP) No. PG048-2014A. The authors would also like to acknowledge the Faculty of Engineering and Faculty of Science, University of Malaya for providing the facilities and resources necessary for this research.

Authors’ contributions

K.H.G. was involved in experimental design, data acquisition, data interpretation and analysis, and drafting and revision of the manuscript. Y.H.W. and A.S.M.A.H. were involved in revising the manuscript critically for important intellectual content and gave final approval for the version submitted for publication.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yew Hoong Wong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goh, K.H., Haseeb, A.S.M.A. & Wong, Y.H. Effect of Oxidation Temperature on Physical and Electrical Properties of Sm2O3 Thin-Film Gate Oxide on Si Substrate. J. Electron. Mater. 45, 5302–5312 (2016). https://doi.org/10.1007/s11664-016-4694-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4694-z

Keywords

Navigation