Skip to main content
Log in

n +-Microcrystalline-Silicon Tunnel Layer in Tandem Si-Based Thin Film Solar Cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, the p-SiC/i-Si/n-Si cell and the p-SiC/i-SiGe/n-Si cell deposited using plasma-enhanced chemical vapor deposition were cascaded for forming the tandem Si-based thin film solar cells to absorb the wide solar spectrum. To further improve the performances of the tandem Si-based thin film solar cells, a 5-nm-thick n +-microcrystalline-Si (n +-μc-Si) tunnel layer deposited using the laser-assisted plasma-enhanced chemical vapor deposition was inserted between the p-SiC/i-Si/n-Si cell and the p-SiC/i-SiGe/n-Si cell. Since both the plasma and the CO2 laser were simultaneously utilized to efficiently decompose the reactant and doping gases, the carrier concentration and the carrier mobility of the n +-μc-Si tunnel layer were significantly improved. The ohmic contact formed between the p-SiC layer and the n +-μc-Si tunnel layer with low resistance was beneficial to the generated current transportation and the carrier recombination rate. Therefore, the conversion efficiency of the tandem solar cells was promoted from 8.57% and 8.82% to 9.91% compared to that without tunnel layer and with 5-nm-thick n +-amorphous-Si tunnel layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.Y. Tseng, C.K. Lee, and C.T. Lee, Prog. Photovolt. Res. Appl. 19, 436 (2011).

    Article  Google Scholar 

  2. D. Shahrjerdi, S.W. Bedell, C. Ebert, C. Bayram, B. Hekmatshoar, K. Fogel, P. Lauro, M. Gaynes, T. Gokmen, J.A. Ott, and D.K. Sadana, Appl. Phys. Lett. 100, 053901 (2012).

    Article  Google Scholar 

  3. C.Y. Tseng and C.T. Lee, Appl. Phys. Lett. 101, 033902 (2012).

    Article  Google Scholar 

  4. F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T.N.D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A.W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, Prog. Photovolt. Res. Appl. 22, 277 (2014).

    Article  Google Scholar 

  5. J.F. Wheeldon, C.E. Valdivia, A.W. Walker, G. Kolhatkar, A. Jaouad, A. Turala, B. Riel, D. Masson, N. Puetz, S. Fafard, R. Ares, V. Aimez, T.J. Hall, and K. Hinzer, Prog. Photovolt. Res. Appl. 19, 442 (2011).

    Article  Google Scholar 

  6. M. Yamaguchi, T. Takamoto, and K. Araki, Sol. Energy Mater. Sol. Cells 90, 3068 (2006).

    Article  Google Scholar 

  7. C.T. Lee, K.F. Lu, and C.Y. Tseng, Sol. Energy 114, 1 (2015).

    Article  Google Scholar 

  8. C.K. Huang, H.H. Lin, J.T. Chen, K.W. Sun, and W.L. Chang, Sol. Energy Mater. Sol. Cells 95, 2540 (2011).

    Article  Google Scholar 

  9. C.T. Lee and C.H. Lee, Org. Electron. 14, 2046 (2013).

    Article  Google Scholar 

  10. X. Wang, X. Li, G. Tang, L. Zhao, W. Zhang, T. Jiu, and J. Fang, Org. Electron. 24, 205 (2015).

    Article  Google Scholar 

  11. S.S. Hegedus, F. Kampass, and J. Xi, Appl. Phys. Lett. 67, 813 (1995).

    Article  Google Scholar 

  12. N. Palit, A. Dasgupta, S. Ray, and P. Chatterjee, J. Appl. Phys. 88, 2853 (2000).

    Article  Google Scholar 

  13. Y. Sakai, K. Fukuyama, M. Matsumura, Y. Nakato, and H. Tsubomura, J. Appl. Phys. 64, 394 (1988).

    Article  Google Scholar 

  14. D.S. Shen, R.E.I. Schropp, H. Chatham, R.E. Hollingworth, P.K. Bhat, and J. Xi, Appl. Phys. Lett. 56, 1871 (1990).

    Article  Google Scholar 

  15. C.T. Lee, Y.F. Chen, and C.H. Lin, Nanotechnology 20, 025702 (2009).

    Article  Google Scholar 

  16. C.T. Lee, J.H. Cheng, and H.Y. Lee, Appl. Phys. Lett. 91, 091920 (2007).

    Article  Google Scholar 

  17. W.B. Steward and H.H. Nielsen, Phys. Rev. 47, 828 (1935).

    Article  Google Scholar 

  18. H.Y. Lee, Y.C. Lin, C.H. Chang, and C.Y. Tseng, Sol. Energy 107, 365 (2014).

    Article  Google Scholar 

  19. S. Klein, T. Repmann, and T. Brammer, Sol. Energy 77, 893 (2004).

    Article  Google Scholar 

  20. S.Q. Xiao, S. Xu, D.Y. Wei, S.Y. Huang, H.P. Zhou, and Y. Xu, J. Appl. Phys. 108, 113520 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Ting Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CT., Lee, HY. & Chen, KH. n +-Microcrystalline-Silicon Tunnel Layer in Tandem Si-Based Thin Film Solar Cells. J. Electron. Mater. 45, 4838–4842 (2016). https://doi.org/10.1007/s11664-016-4691-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4691-2

Keywords

Navigation