Skip to main content
Log in

Influence of TiO2 Nanorod Arrays on the Bilayered Photoanode for Dye-Sensitized Solar Cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A TiO2 bilayered structure consisting of TiO2 nanoparticles (TiO2NP) as an overlayer and single-crystal rutile TiO2 nanorods (TiO2 NRs) as an underlayer on a transparent conductive fluorine-doped tin oxide substrate was designed as the photoanode of dye-sensitized solar cells (DSSCs) through a facile hydrothermal treatment followed by a doctor-blade method. DSSCs based on the hierarchical TiO2 nano-architecture photoelectrode shows a power conversion efficiency of 7.39% because the relatively large specific surface area of TiO2NP increased the dye absorption, and oriented one-dimensional TiO2 NRs enhanced the light harvesting capability, accelerating interfacial electron transport. In particular, we observed the growth morphology of the TiO2 nanorod arrays in the bilayered photoanode and the influence of the whole solar cell. The result indicated that the TiO2 NRs layer clearly impacted the photoelectron chemical properties, while the vertical and intensive nanorod arrays significantly increased their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hoppe and N.S. Sariciftci, J. Mater. Res. 19, 1924 (2004).

    Article  Google Scholar 

  2. S.G. Kumar and L.G. Devi, J. Phys. Chem. A 115, 13211 (2011).

    Article  Google Scholar 

  3. B. O’regan and M. Grätzel, Nature 353, 737 (1991).

    Article  Google Scholar 

  4. M. Grätzel, Nature 414, 338 (2001).

    Article  Google Scholar 

  5. M. Grätzel, J. Photochem. Photobiol. C 4, 145 (2003).

    Article  Google Scholar 

  6. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, and M. Grätzel, Nat. Chem. 6, 242 (2014).

    Article  Google Scholar 

  7. X. Miao, K. Pan, Y. Liao, W. Zhou, Q. Pan, G. Tian, and G. Wang, J. Mater. Chem. A 1, 9853 (2013).

    Article  Google Scholar 

  8. J. Yu, J. Fan, and L. Zhao, Electrochim. Acta 55, 597 (2010).

    Article  Google Scholar 

  9. M.K. Nazeeruddin, P. Pechy, T. Renouard, S.M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, and V. Shklover, J. Am. Chem. Soc. 123, 1613 (2001).

    Article  Google Scholar 

  10. T. Daeneke, T.-H. Kwon, A.B. Holmes, N.W. Duffy, U. Bach, and L. Spiccia, Nat. Chem. 3, 211 (2011).

    Article  Google Scholar 

  11. S.G. Hashmi, T. Moehl, J. Halme, Y. Ma, T. Saukkonen, A. Yella, F. Giordano, J.D. Decoppet, S.M. Zakeeruddin, and P. Lund, J. Mater. Chem. A 2, 19609 (2014).

    Article  Google Scholar 

  12. W.-Q. Wu, J.-Y. Liao, H.-Y. Chen, X.-Y. Yu, C.-Y. Su, and D.-B. Kuang, J. Mater. Chem. 22, 18057 (2012).

    Article  Google Scholar 

  13. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Chem. Rev. 110, 6595 (2010).

    Article  Google Scholar 

  14. G. Cheng, M.S. Akhtar, O.-B. Yang, and F.J. Stadler, ACS Appl. Mater. Interface 5, 6635 (2013).

    Article  Google Scholar 

  15. X. Sheng, D. He, J. Yang, K. Zhu, and X. Feng, Nano Lett. 14, 1848 (2014).

    Article  Google Scholar 

  16. P. Sun, X. Zhang, C. Wang, Y. Wei, L. Wang, and Y. Liu, J. Mater. Chem. A 1, 3309 (2013).

    Article  Google Scholar 

  17. B.-X. Lei, Q.-P. Luo, Z.-F. Sun, D.-B. Kuang, and C.-Y. Su, Adv. Powder Technol. 24, 175 (2013).

    Article  Google Scholar 

  18. J.-H. Yun, I.K. Kim, Y.H. Ng, L. Wang, and R. Amal, Beilstein J. Nanotechnol. 5, 895 (2014).

    Article  Google Scholar 

  19. T. Yuan, H. Lu, B. Dong, L. Zhao, L. Wan, S. Wang, and Z. Xu, J. Mater. Sci. 26, 1332 (2015).

    Google Scholar 

  20. Y. Li, X. Yu, Z. Sun, X. Chen, S. Fowler, Y. Chen, J. Lian, and J. Jiao, Energy Environ. Focus 3, 366 (2014).

    Article  Google Scholar 

  21. K. Mahmood, B.S. Swain, and A. Amassian, Adv. Mater. 27, 2859 (2015).

    Article  Google Scholar 

  22. S. Sadhu and P. Poddar, J. Phys. Chem. C 118, 19363 (2014).

    Article  Google Scholar 

  23. G. Dai, L. Zhao, J. Li, L. Wan, F. Hu, Z. Xu, B. Dong, H. Lu, S. Wang, and J. Yu, J. Colloid Interface Sci. 365, 46 (2012).

    Article  Google Scholar 

  24. W.-Q. Wu, Y.-F. Xu, H.-S. Rao, C.-Y. Su, and D.-B. Kuang, Nanoscale 5, 4362 (2013).

    Article  Google Scholar 

  25. J.T. Park, R. Patel, H. Jeon, D.J. Kim, J.-S. Shin, and J.H. Kim, J. Mater. Chem. 22, 6131 (2012).

    Article  Google Scholar 

  26. J. Cai, J. Ye, S. Chen, X. Zhao, D. Zhang, S. Chen, Y. Ma, S. Jin, and L. Qi, Energy Environ. Sci. 5, 7575 (2012).

    Article  Google Scholar 

  27. H.-S. Kim, J.-W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Grätzel, and N.-G. Park, Nano Lett. 13, 2412 (2013).

    Article  Google Scholar 

  28. Y. Feng, J. Zhu, J. Jiang, W. Wang, G. Meng, F. Wu, Y. Gao, and X. Huang, RSC Adv. 4, 12944 (2014).

    Article  Google Scholar 

  29. J. Yu, J. Fan, and B. Cheng, J. Power Sources 196, 7891 (2011).

    Article  Google Scholar 

  30. M. Grätzel, Prog. Photovolt. 8, 171 (2000).

    Article  Google Scholar 

  31. B. Liu and E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009).

    Article  Google Scholar 

  32. J.-J. Wu, G.-R. Chen, C.-C. Lu, W.-T. Wu, and J.-S. Chen, Nanotechnology 19, 105702 (2008).

    Article  Google Scholar 

  33. W. Guo, C. Xu, X. Wang, S. Wang, C. Pan, C. Lin, and Z.L. Wang, J. Am. Chem. Soc. 134, 4437 (2012).

    Article  Google Scholar 

  34. M.K. Nazeeruddin, R. Splivallo, P. Liska, P. Comte, and M. Grätzel, Chem. Commun. 12, 1456 (2003).

    Article  Google Scholar 

  35. Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niiharaand, and S. Yanagida, Phys. Chem. Chem. Phys. 7, 4157 (2005).

    Article  Google Scholar 

  36. A. Mathew, G.M. Rao, and N. Munichandraiah, Thin Solid Films 520, 3581 (2012).

    Article  Google Scholar 

  37. R. Cisneros, M. Beley, J.-F. Fauvarque, and F. Lapicque, Electrochim. Acta 171, 49 (2015).

    Article  Google Scholar 

  38. A.-Y. Kim and M. Kang, J. Photochem. Photobiol. A 233, 20 (2012).

    Article  Google Scholar 

  39. X. Wang, Y. Liu, X. Zhou, B. Li, H. Wang, W. Zhao, H. Huang, C. Liang, X. Yuand, and Z. Liu, J. Mater. Chem. 22, 17531 (2012).

    Article  Google Scholar 

  40. K. Zhu, N. Kopidakis, N.R. Neale, J. van de Lagemaat, and A.J. Frank, J. Phys Chem. B 110, 25174 (2006).

    Article  Google Scholar 

  41. Z. Arie, G. Miri, and B. Juan, ChemPhysChem 4, 859 (2003).

    Article  Google Scholar 

  42. W. Schottky and Z. Phys, A Hadron. Nucl. 118, 539 (1942).

    Google Scholar 

  43. J. Birch and T. Burleigh, Corrosion 56, 1233 (2000).

    Article  Google Scholar 

  44. V. Mahajan, M. Misra, K. Raja, and S. Mohapatra, J. Phys. D Appl. Phys. 41, 125307 (2008).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (21201156) and the Fundamental Research Founds for National University, China University of Geosciences (Wuhan, CUG130401). The financial support is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Li, Z., Wang, Y. et al. Influence of TiO2 Nanorod Arrays on the Bilayered Photoanode for Dye-Sensitized Solar Cells. J. Electron. Mater. 45, 4989–4998 (2016). https://doi.org/10.1007/s11664-016-4670-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4670-7

Keywords

Navigation