Skip to main content
Log in

Photoluminescence Decay Dynamics in Blue and Green InGaN LED Structures Revealed by the Frequency-Domain Technique

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An extended study of charge-carrier localization and delocalization in blue and green InGaN light-emitting diode (LED) test structures has been performed. Using the frequency-domain lifetime measurement (FDLM) technique based on direct harmonic modulation of photoluminescence excitation in the frequency range from 1 Hz to 100 MHz, carrier lifetimes were estimated at scales spanning from milliseconds to nanoseconds. The time resolution was determined using fast Fourier transform analysis. A system comprising a radiative and several nonradiative recombination channels was used to describe the complex photoluminescence decay. Due to the broad timescale, even stretched exponential decays from 2 ns to 4 ns up to 1.5 μs (stretching parameter 0.5 to 0.6) were revealed. A higher degree of carrier delocalization was observed for the blue compared with the green light-emitting structure, providing qualitative insight into disorder, which is tentatively assigned to spatial fluctuations of the indium concentration in the quantum wells. A nanosecond nonradiative recombination channel for the green light-emitting structure was found to be unsaturated throughout the entire photoexcitation power density range and was interpreted as being related to the higher defect density and lower internal quantum efficiency of the sample. To expand the study of lifetimes to much higher photoexcitation power density, time-resolved photoluminescence kinetics were measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Gaviola, Z. Phys. 42, 853 (1926).

    Article  Google Scholar 

  2. J. Sipior, G.M. Carter, J.R. Lakowicz, and G. Rao, Rev. Sci. Instrum. 68, 2666 (1997).

    Article  Google Scholar 

  3. V. Shia, D. Watt, and G.W. Faris, Biomed. Opt. Expr. 2, 1931 (2011).

    Article  Google Scholar 

  4. N. Boens, W. Qin, N. Basaric, J. Hofkens, M. Ameloot, J. Pouget, J.P. Lefevre, B. Valeur, E. Gratton, M. vandeVen, N.D. Silva, Jr., Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A.J.W.G. Visser, A. van Hoek, J.R. Lakowicz, H. Malak, I. Gryczynski, A.G. Szabo, D.T. Krajcarski, N. Tamai, and A. Miura, Anal. Chem. 79, 2137 (2007).

  5. A.D. Elder, C.F. Kaminski, and J.H. Frank, Opt. Express 17, 23181 (2009).

    Article  Google Scholar 

  6. K.C. Schuermann and H.E. Grecco, Opt. Express 20, 249 (2012).

    Article  Google Scholar 

  7. H. Chen and E. Gratton, Microsc. Res. Tech. 76, 282 (2013).

    Article  Google Scholar 

  8. K.H. Shim and B.G. Kim, J. Korean Phys. Soc. 49, 647 (2006).

    Google Scholar 

  9. A.D. Elder, J.H. Frank, J. Swartling, X. Dai, and C.F. Kaminski, J. Microsc. 224, 166 (2006).

    Article  Google Scholar 

  10. T. Mizuno, Y. Mizutani, and T. Iwata, Opt. Rev. 19, 222 (2012).

    Article  Google Scholar 

  11. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Berlin: Springer, 2005), p. 20.

    Book  Google Scholar 

  12. A.R. Albrecht, R.B. Laghumavarapu, B. Imangholi, M. Sheik-Bahae, and K.J. Malloy, SPIE Proc. 6461, 46108 (2007).

    Google Scholar 

  13. J. Mickevicius, G. Tamulaitis, P. Vitta, A. Zukauskas, M.S. Shur, J. Zhang, J. Yang, and R. Gaska, Solid State Commun. 145, 312 (2008).

    Article  Google Scholar 

  14. J.W. Cooley and J.W. Tukey, Math. Comput. 19, 297 (1965).

    Article  Google Scholar 

  15. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (New York: Springer, 2006).

    Book  Google Scholar 

  16. P. Vitta, I. Reklaitis, and A. Žukauskas, Meas. Sci. Technol. 23, 035502 (2012).

    Article  Google Scholar 

  17. M. Pophristic, F.H. Longa, C. Tran, I.T. Ferguson, and R.F. Karlicek Jr, Appl. Phys. Lett. 73, 3550 (1998).

    Article  Google Scholar 

  18. G.E.P. Box, Ann. NY Acad. Sci. 86, 792 (1960).

    Article  Google Scholar 

  19. C. Li, E.B. Stokes, and E. Armour, ECS J. Solid. State Sci. Technol. 4, R10 (2015).

    Article  Google Scholar 

  20. H. Wang, Z. Ji, S. Qu, G. Wang, Y. Jiang, B. Liu, X. Xu, and H. Mino, Opt. Express 20, 3932 (2012).

    Article  Google Scholar 

  21. D. Monroe, Phys. Rev. Lett. 54, 146 (1985).

    Article  Google Scholar 

  22. S.D. Baranovskii, R. Eichmann, and P. Thomas, Phys. Rev. B 58, 13081 (1998).

    Article  Google Scholar 

  23. M. Grünewald, B. Movaghar, B. Pohlmann, and D. Würtz, Phys. Rev. B 32, 8191 (1985).

    Article  Google Scholar 

  24. B.K. Ridley, Phys. Rev. B 41, 12190 (1990).

    Article  Google Scholar 

  25. J. Feldmann, G. Peter, E.O. Göbel, P. Dawson, K. Moore, C. Foxon, and R.J. Elliott, Phys. Rev. Lett. 59, 2337 (1987).

  26. Y.-H. Cho, G.H. Gainer, A.J. Fischer, J.J. Song, S. Keller, U.K. Mishra, and S.P. DenBaars, Appl. Phys. Lett. 73, 1370 (1998).

    Article  Google Scholar 

  27. M.S. Minsky, S. Watanabe, and N. Yamada, J. Appl. Phys. 91, 5176 (2002).

    Article  Google Scholar 

  28. B. Monemar and B.E. Sernelius, Appl. Phys. Lett. 91, 181103 (2007).

    Article  Google Scholar 

  29. R. Aleksiejūnas, K. Gelžinytė, S. Nargelas, K. Jarašiūnas, M. Vengris, E.A. Armour, D.P. Byrnes, R.A. Arif, S.M. Lee, and G.D. Papasouliotis, Appl. Phys. Lett. 104, 022114 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission 7th Framework Program Project NEWLED #318388.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Reklaitis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reklaitis, I., Kudžma, R., Miasojedovas, S. et al. Photoluminescence Decay Dynamics in Blue and Green InGaN LED Structures Revealed by the Frequency-Domain Technique. J. Electron. Mater. 45, 3290–3299 (2016). https://doi.org/10.1007/s11664-016-4557-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4557-7

Keywords

Navigation