Skip to main content
Log in

Effect of Reflow Time on Wetting Behavior, Microstructure Evolution, and Joint Strength of Sn-2.5Ag-0.5Cu Solder on Bare and Nickel-Coated Copper Substrates

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of reflow time on wetting behavior of Sn-2.5Ag-0.5Cu lead-free solder on bare and nickel-coated copper substrates has been investigated. The solder alloy was reflowed at 270°C for various reflow times of 10 s, 100 s, 300 s, and 500 s. On bare copper substrate, the intermetallic compound (IMC) thickness increased with increase in reflow time, whereas on Ni-coated Cu substrate, the IMC thickness increased up to 300 s followed by a drop for solder alloy reflowed for 500 s. The spreading behavior of the solder alloy was categorized into capillary, gravity (diffusion), and viscous zones. Gravity zone was obtained from 3.8 ± 0.43 s to 38.97 ± 3.38 s and from 5.99 ± 0.5 s to 77.82 ± 8.84 s for the Sn-2.5Ag-0.5Cu/Cu and Sn-2.5Ag-0.5Cu/Ni/Cu system, respectively. Sn-2.5Ag-0.5Cu solder alloy was also reflowed for the period corresponding to the end of the gravity zone (40 s and 80 s on bare and Ni-coated Cu, respectively). The joint strength was maximum at reflow time of 40 s and 80 s for the Sn-2.5Ag-0.5Cu/Cu and Sn-2.5Ag-0.5Cu/Ni/Cu system, respectively. The dynamic contact angle at the end of the gravity (diffusion) zone (θ gz) was found to be a better parameter compared with the stabilized contact angle (θ f) to assess the effect of the wettability of the liquid solder on the microstructure and joint strength. The present investigation reveals the significance of the gravity zone in assessment of optimum reflow time for lead-free solder alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Tsukamoto, T. Nishimura, S. Suenaga, and K. Nogita, Mater. Sci. Eng. B 171, 162 (2010).

    Article  Google Scholar 

  2. D.Q. Yu, J. Zhao, and L. Wang, J. Alloys Compd. 376, 170 (2004).

    Article  Google Scholar 

  3. C.Y. Ho and J.G. Duh, Mater. Lett. 92, 278 (2013).

    Article  Google Scholar 

  4. Satyanarayan and K.N. Prabhu, Adv. Colloid Interface Sci. 166, 87 (2011).

  5. B.L. Silva, N. Cheung, A. Garcia, and J.E. Spinelli, Mater. Lett. 142, 163 (2015).

    Article  Google Scholar 

  6. M. Arra, D. Shangguan, E. Ristolainen, and T. Lepisto, Solder Surf. Mt. Tech. 14, 18 (2002).

    Article  Google Scholar 

  7. M.S. Park, M.K. Stephenson, C. Shannon, L.A.C. Diaz, K.A. Hudspeth, S.L. Gibbons, M.J. Saldana, and R. Arroyave, Acta Mater. 60, 5125 (2012).

    Article  Google Scholar 

  8. M. Sona and K.N. Prabhu, Trans. Indian Inst. Met. (2015). doi:10.1007/s12666-015-0590-0.

    Google Scholar 

  9. S. Amore, E. Ricci, G. Borzone, and R. Novakovic, Mater. Sci. Eng. A 495, 108 (2008).

    Article  Google Scholar 

  10. M. Sona and K.N. Prabhu, J. Mater. Sci. Mater. El. 24, 3149 (2013).

    Article  Google Scholar 

  11. A. Choubey, H. Yu, M. Osterman, M. Pecht, F. Yun, L. Yonghong, and X. Ming, J. Electron. Mater. 37, 1130 (2008).

    Article  Google Scholar 

  12. A.A.E. Daly and A.M.E. Taher, Mater. Des. 47, 607 (2013).

    Article  Google Scholar 

  13. T. Laurila and V. Vuorinen, Materials 2, 1796 (2009).

    Article  Google Scholar 

  14. D. Mu, H. Huang, and K. Nogita, Mater. Lett. 86, 46 (2012).

    Article  Google Scholar 

  15. J. Pan, J. Wang, and D.M. Shaddock, Proceedings of the 37th International Symposium on Microelectronics, (2004).

  16. M.N. Islam, Y.C. Chan, A. Sharif, and M.O. Alam, Microelectron. Reliab. 43, 2031 (2003).

    Article  Google Scholar 

  17. T. You, Y. Kim, W. Jung, J. Moon, and H. Choe, J. Alloys Compd. 486, 242 (2009).

    Article  Google Scholar 

  18. C.M. Chen and H.C. Lin, J. Electron. Mater. 35, 1937 (2006).

    Article  Google Scholar 

  19. M. Sona and K.N. Prabhu, SMTA J. 28, 36 (2015).

    Google Scholar 

  20. Z. Dariavach, P. Callahan, J. Liang, and R. Fournelle, J. Electron. Mater. 35, 1581 (2006).

    Article  Google Scholar 

  21. C.K. Wong, J.H.L. Pang, J.W. Tew, B.K. Lok, H.J. Lu, F.L. Ng, and Y.F. Sun, Microelectron. Reliab. 48, 611 (2008).

    Article  Google Scholar 

  22. A. Zribi, A. Clark, L. Zavalij, P. Borgesen, and E.J. Cotts, J. Electron. Mater. 30, 1157 (2001).

    Article  Google Scholar 

  23. M. Schaefer, R. Fournelle, and J. Liang, J. Electron. Mater. 27, 1167 (1998).

    Article  Google Scholar 

  24. J.M. Song, C.W. Su, Y.S. Lai, and Y.T. Chiu, J. Mater. Res. 25, 629 (2010).

    Article  Google Scholar 

  25. Q.K. Zhang, J. Tan, and Z.F. Zhang, J. Appl. Phys. 110, 014502 (2011).

    Article  Google Scholar 

  26. D. Mu, H. Yasuda, H. Huang, and K. Nogita, J. Alloys Compd. 536, 38 (2012).

    Article  Google Scholar 

  27. D. Mu, H. Huang, S.D. McDonald, J. Read, and K. Nogita, Mater. Sci. Eng. A 566, 126 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Narayan Prabhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sona, M., Prabhu, K.N. Effect of Reflow Time on Wetting Behavior, Microstructure Evolution, and Joint Strength of Sn-2.5Ag-0.5Cu Solder on Bare and Nickel-Coated Copper Substrates. J. Electron. Mater. 45, 3744–3758 (2016). https://doi.org/10.1007/s11664-016-4504-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4504-7

Keywords

Navigation