Skip to main content

Advertisement

Log in

Properties of Se/InSe Thin-Film Interface

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Se, InSe, and Se/InSe thin films have been prepared by the physical vapor deposition technique at pressure of ∼10−5 torr. The structural, optical, and electrical properties of the films and Se/InSe interface were investigated by means of x-ray diffraction (XRD) analysis, ultraviolet–visible spectroscopy, and current–voltage (IV) characteristics. XRD analysis indicated that the prepared InSe films were amorphous while the Se films were polycrystalline having hexagonal structure with unit cell parameters of a = 4.3544 Å and c = 4.9494 Å. Spectral reflectance and transmittance analysis showed that both Se and InSe films exhibited indirect allowed transitions with energy bandgaps of 1.92 eV and 1.34 eV, respectively. The Se/InSe interface exhibited two energy bandgaps of 0.98 eV and 1.73 eV above and below 2.2 eV, respectively. Dielectric constant values were also calculated from reflectance spectra for the three layers in the frequency range of 500 THz to 272 THz. The dielectric constant exhibited a promising feature suggesting use of the Se/InSe interface as an optical resonator. Moreover, the Au/Se/InSe/Ag heterojunction showed some rectifying properties that could be used in standard optoelectronic devices. The ideality factor and height of the energy barrier to charge carrier motion in this device were found to be 1.72 and 0.66 eV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.H. Saleh, M.M.A. Jafar, B.N. Bulos, and T.M.F. Al-Daraghmeh, Appl. Phys. Res. 6, 10 (2014).

    Article  Google Scholar 

  2. M. Panahi-Kalamuei, M. Salavati-Niasari, and S.M. Hosseinpour-Mashkan, J. Alloys Compd. 617, 627 (2014).

    Article  Google Scholar 

  3. K. Wang, F. Chen, G. Belev, S. Kasap, and K.S. Karim, Appl. Phys. Lett. 95, 013505 (2009).

    Article  Google Scholar 

  4. G.W. Tang, Q. Qian, K.L. Peng, X. Wen, G.X. Zhou, M. Sun, X.D. Chen, and Z.M. Yang, AIP Adv. 5, 027113 (2015).

    Article  Google Scholar 

  5. W. Monch, J. Mater. Sci. 26, 1097 (2015).

    Google Scholar 

  6. A.A.A. Darwish, T.A. Hanafy, A.A. Attia, D.M. Habashy, M.Y. El-Bakry, and M.M. El-Nahass, Superlattice Microst. 83, 299 (2015).

    Article  Google Scholar 

  7. T.S. Kayed, A.F. Qasrawi, and K.A. Elsayed, Phys. Status Solidi B 252, 621 (2015).

    Article  Google Scholar 

  8. S. Sucharitakul, N.J. Goble, U.R. Kumar, R. Sankar, Z.A. Bogorad, F. Chou, Y. Chen, and X.P.A. Gao, Nano Lett. 15, 3815 (2015).

    Article  Google Scholar 

  9. P.M. Reshmi, A.G. Kunjomana, and K.A. Chandrasekharan, Cryst. Res. Technol. 46, 153 (2011).

    Article  Google Scholar 

  10. V.V. Atuchina, T.A. Gavrilovab, K.A. Kokh, N.V. Kuratievad, N.V. Pervukhinad, and N.V. Surovtseve, Solid State Commun. 152, 1119 (2012).

    Article  Google Scholar 

  11. C. Muratore, J.J. Hu, B. Wang, M.A. Haque, J.E. Bultman, M.L. Jespersen, P.J. Shamberger, M.E. McConney, R.D. Naguy, and A.A. Voevodin, Appl. Phys. Lett. 104, 261604 (2014).

    Article  Google Scholar 

  12. K.A. Kokh, V.V. Atuchin, T.A. Gavrilova, N.V. Kuratieva, N.V. Pervukhina, and N.V. Surovtsev, Solid State Commun. 177, 16 (2014).

    Article  Google Scholar 

  13. A.F. Qasrawi and H.K. Khanfar, IEEE Sens. J. 15, 3603 (2015).

    Article  Google Scholar 

  14. S.R. Alharbi and A.F. Qasrawi, J. Electron. Mater. 44, 2686 (2015).

    Article  Google Scholar 

  15. M.L. Benkhedir, Defect levels in the amorphous selenium bandgap. (Thesis, Katholieke Universiteit Leuven, 2006) pp. 30–35.

  16. G.R. Fowles, Introduction to Modern Optics, 2nd ed. (New York: Dover, 1975), p. 102.

    Google Scholar 

  17. J.I. Pankove, Optical Processes in Semiconductors (New Jersey: Prentice-Hall, 1971), p. 87.

    Google Scholar 

  18. S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A.D. Mohite, and P.M. Ajayan, ACS Nano 8, 1263 (2014).

    Article  Google Scholar 

  19. R. Mukhopadhyay, A.M. Shaikh, and B.K. Godwal, Proceedings of the D. A. E. Solid State Physics Symposium 41, 350 (1998).

  20. S.H. Arnon, Visible Light Communication (Cambridge: Cambridge University Press, 2015), p. 1.

    Book  Google Scholar 

  21. V.R. Reddy, V. Janardhanam, M.-S. Kang, and C.-J. Choi, J. Mater. Sci. 25, 2379 (2014).

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Deanship of Scientific Research at the University of Dammam in Saudi Arabia under Project No. 2014139.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Qasrawi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasrawi, A.F., Kayed, T.S. & Elsayed, K.A. Properties of Se/InSe Thin-Film Interface. J. Electron. Mater. 45, 2763–2768 (2016). https://doi.org/10.1007/s11664-016-4414-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4414-8

Keywords

Navigation