Skip to main content
Log in

Understanding Electrical Conduction States in WO3 Thin Films Applied for Resistive Random-Access Memory

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electrical conduction and associated resistance switching mechanism of top electrode/WO3/bottom electrode devices [top electrode (TE): Ag, Ti; bottom electrode (BE): Pt, fluorine-doped tin oxide] have been investigated. The direction of switching and switching ability depended on both the top and bottom electrode material. Multiple electrical conduction mechanisms control the leakage current of such switching devices, including trap-controlled space-charge, ballistic, Ohmic, and Fowler–Nordheim tunneling effects. The transition between electrical conduction states is also linked to the switching (SET–RESET) process. This is the first report of ballistic conduction in research into resistive random-access memory. The associated resistive switching mechanisms are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.H. Jo, Doctoral Thesis, The University of Michigan, 2010.

  2. S.Q. Liu, N.J. Wii, and A. Ignatiev, Appl. Phys. Lett. 76, 2749 (2000).

    Article  Google Scholar 

  3. Y. Watanabe, J.G. Bednorz, A. Bietsch, Ch Gerber, D. Widmer, A. Beck, and S.J. Wind, Appl. Phys. Lett. 78, 3738 (2001).

    Article  Google Scholar 

  4. R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).

    Article  Google Scholar 

  5. B.T. Phan and J. Lee, Appl. Phys. Lett. 93, 222906 (2008).

    Article  Google Scholar 

  6. B.T. Phan and J. Lee, Appl. Phys. Lett. 94, 232102 (2009).

    Article  Google Scholar 

  7. B.T. Phan, N.C. Kim, and J. Lee, J. Korean Phys. Soc. 54, 873 (2009).

    Article  Google Scholar 

  8. B.T. Phan, T. Choi, A. Romanenko, and J. Lee, Solid-State Electron. 75, 43 (2012).

    Article  Google Scholar 

  9. Y.C. Chen, C.F. Chen, C.T. Chen, J.Y. Yu, S. Wu, S.L. Lung, R. Liu, and C.Y. Lu, IEDM Tech. Dig. (2003), pp. 905–908.

  10. B.J. Choi, D.S. Jeong, S.K. Kim, S. Choi, J.H. Oh, C. Rohde, H.J. Kim, C.S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, J. Appl. Phys. 98, 033715 (2005).

    Article  Google Scholar 

  11. K. Jung, H. Seo, Y. Kim, H. Im, J.P. Hong, J.W. Park, and J.K. Lee, Appl. Phys. Lett. 90, 052104 (2007).

    Article  Google Scholar 

  12. A. Chen, S. Haddad, Y.C. Wu, Z. Lan, T.N. Fang, and S. Kaza, Appl. Phys. Lett. 91, 123517 (2007).

    Article  Google Scholar 

  13. C.Y. Lin, C.Y. Wu, C. Hu, and T.Y. Tseng, J. Electrochem. Soc. 154, G189 (2007).

    Article  Google Scholar 

  14. T. Le, H.C.S. Tran, V.H. Le, T. Tran, C.V. Tran, T.T. Vo, M.C. Dang, S.S. Kim, J. Lee, and B.T. Phan, J. Korean Phys. Soc. 60, 1087 (2012).

    Article  Google Scholar 

  15. N.K. Pham, D.T. Nguyen, B.T.T. Dao, K.H.T. Ta, V.C. Tran, V.H. Nguyen, S.S. Kim, S. Maenosono, and B.T. Phan, J. Electron. Mater. 43, 2747 (2014).

    Article  Google Scholar 

  16. T.B.T. Dao, K.N. Pham, Y.L. Cheng, S.S. Kim, and B.T. Phan, Curr. Appl. Phys. 14, 1707 (2014).

    Article  Google Scholar 

  17. K.N. Pham, M.S. Choi, C.V. Tran, T.D. Nguyen, V.H. Le, T. Choi, J. Lee, and B.T. Phan, J. Electron. Mater. 44, 3395 (2015).

    Article  Google Scholar 

  18. J.B. Park, K.P. Biju, S.J. Jung, W.T. Lee, J.M. Lee, S.H. Kim, S.S. Park, J.H. Shin, and H.S. Hwang, IEEE Electron Device Lett. 32, 476 (2011).

    Article  Google Scholar 

  19. J.W. Seo, Doctoral Thesis, Korean Advanced Institute of Science and Technology, 2011.

  20. D.S. Jeong, R. Thomas, R. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru, and C.S. Hwang, Rep. Prog. Phys. 75, 076502 (2012).

    Article  Google Scholar 

  21. Y.E. Syu, T.C. Chang, T.M. Tsa, G.W. Chang, K.C. Chang, Y.H. Tai, M.J. Tsai, Y.L. Wang, and S.M. Sze, Appl. Phys. Lett. 100, 022904 (2012).

    Article  Google Scholar 

  22. B.U. Jang, A.I. Inamdar, J.M. Kim, W. Jung, H.S. Im, H.S. Kim, and J.P. Hong, Thin Solid Films 520, 5451 (2012).

    Article  Google Scholar 

  23. D.S. Hong, Y.S. Chen, Y. Li, H.W. Yang, L.L. Wei, B.G. Shen, and J.R. Sun, Sci. Rep. 4, 4058 (2014).

    Google Scholar 

  24. J. Wua and J. Wang, J. Appl. Phys. 108, 034102 (2010).

    Article  Google Scholar 

  25. W.Y. Yang and S.W. Rhee, Appl. Phys. Lett. 91, 232907 (2007).

    Article  Google Scholar 

  26. N.F. Mott and R.W. Gurney, Electronic Processes in Ionic Crystals (Oxford: Clarendon, 1940).

    Google Scholar 

  27. S.M. Sze, Physics of Semiconductor Devices, 2nd ed., Vol. 1 (New York: Wiley, 1981), pp. 72–75.

    Google Scholar 

  28. C. Charles, N. Martin, M. Devel, J. Ollitrault, and A. Billard, Thin Solid Films 534, 275 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bach Thang Phan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ta, T.K.H., Pham, K. ., Dao, T.B. . et al. Understanding Electrical Conduction States in WO3 Thin Films Applied for Resistive Random-Access Memory. J. Electron. Mater. 45, 2423–2432 (2016). https://doi.org/10.1007/s11664-016-4361-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4361-4

Keywords

Navigation