Skip to main content
Log in

Dielectric Relaxation of Rare Earth Ordered Double Perovskite Oxide Ba2ErTaO6

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electrical properties of rare-earth based ordered double perovskite oxide barium erbium tantalate, Ba2ErTaO6 synthesized by solid-state reaction method are investigated. The x-ray diffraction pattern of the sample shows cubic Fm3m phase at room temperature with ordering of the B cations. Fourier transform infrared spectrum shows two primary phonon modes of the sample at around 350 cm−1 and 600 cm−1. The dielectric relaxation of the sample is investigated in the frequency range from 50 Hz to 1.1 MHz and in the temperature range from 303 K to 673 K. Electric modulus and electrical impedance data are fitted to the Cole–Cole equation. The frequency dependent conductivity spectra follow the power law. Summerfield scaling is used to explain the conduction mechanism. The scaling behavior of the imaginary part of the impedance spectra suggests that the relaxation shows the same mechanism at various temperatures. The complex impedance plane plots show that the relaxation (conduction) mechanism in this material is mainly due to grain boundary effect for all temperatures and grain effect for low temperature. The relaxation frequency corresponding to dielectric loss is found to obey Arrhenius law with activation energy of 0.50 eV. The values of activation energy indicate that the dielectric relaxation and the conduction mechanism are due to adiabatic small polaronic hole hopping mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.N. Putilin, E.V. Antipov, O. Chmaissem, and M. Marezio, Nature 362, 226 (1993).

    Article  Google Scholar 

  2. S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, and L.H. Chen, Science 264, 413 (1994).

    Article  Google Scholar 

  3. M. Takata and K. Kageyama, J. Am. Ceram. Soc. 72, 1955 (1989).

    Article  Google Scholar 

  4. L.A. Khalam, H. Sreemoolanathan, R. Ratheesh, P. Mohanan, and M.T. Sebastian, Mater. Sci. Eng. B 107, 264 (2004).

    Article  Google Scholar 

  5. R. Zurmuhlen, J. Petzelt, S. Kamba, G. Kozlov, B. Volkov, B. Gorshunov, D.C. Dube, A. Tagentsev, and N. Setter, J. Appl. Phys. 77, 5351 (1995).

    Article  Google Scholar 

  6. S.K. Korchagina and YuA Shevchuk, Inorg. Mater. 42, 66 (2006).

    Article  Google Scholar 

  7. Y. Doi and Y. Hinatsu, J. Phys. Condens. Matter 13, 4191 (2001).

    Article  Google Scholar 

  8. R.D. Shannon, Acta Cryst. A 32, 751 (1976).

    Article  Google Scholar 

  9. Y. Teraoka, M.D. Wei, and S. Kagawa, J. Mater. Chem. 8, 2323 (1998).

    Article  Google Scholar 

  10. G. King and P.M. Woodward, J. Mater. Chem. 20, 5785 (2010).

    Article  Google Scholar 

  11. L.A. Khalam and M.T. Sebastian, J. Am. Ceram. Soc. 90, 1467 (2007).

    Article  Google Scholar 

  12. T. Hahn, International Tables␣for Crystallography, vol. A (Boston: Reidel Pub. Co., 1983).

    Google Scholar 

  13. J. Rodriguez-Carvaja, Phys. B 192, 55 (1993).

    Article  Google Scholar 

  14. G.Y. Liu, G.H. Rao, X.M. Feng, H.F. Yang, Z.W. Ouyang, W.F. Liu, J.K. Liang, and J. Phys, Condens. Matter 15, 2053 (2003).

    Article  Google Scholar 

  15. P.M. Woodward, R.D. Hoffman, and A.W. Sleight, J. Mater. Res. 9, 2118 (1994).

    Article  Google Scholar 

  16. A.F. Corsmit, H.E. Hoefdraad, and G. Blasse, J. Inorg. Nucl. Chem. 34, 3401 (1972).

    Article  Google Scholar 

  17. G. Blasse and A.F. Corsmit, J. Solid State Chem. 6, 513 (1973).

    Article  Google Scholar 

  18. J.R. Macdonald, Impedance Spectroscopy (New York: Wiley, 1987).

    Google Scholar 

  19. K.S. Cole and R.H. Cole, J. Chem. Phys. 9, 342 (1941).

    Google Scholar 

  20. J. Liu, C. Duan, W.N. Mei, R.W. Smith, and J.R. Hardy, J. Appl. Phys. 98, 093703 (2005).

    Article  Google Scholar 

  21. M. Idress, M. Nadeem, and M.M. Hassan, J. Phys. D Appl. Phys. 43, 155401 (2010).

    Article  Google Scholar 

  22. S. Brahma, R.N.P. Choudhary, and K.T. Awalendra, Phys. B 355, 188 (2005).

    Article  Google Scholar 

  23. P. Ganguly, A.K. Jha, and K.L. Deori, Solid State Commun. 146, 472 (2008).

    Article  Google Scholar 

  24. M. Idrees, M. Nadeem, and M.M. Hassan, J. Phys. D Appl. Phys. 43, 155401 (2010).

    Article  Google Scholar 

  25. H. Rahmouni, R. Jemai, M. Nouiri, N. Kallel, F. Rzigua, A. Selmi, K. Khirouni, and S. Alaya, J. Cryst. Growth 310, 556 (2008).

    Article  Google Scholar 

  26. N. Chihaoui, R. Dhahri, M. Bejar, E. Dharhi, L.C. Costa, and M.P.F. Graça, Solid State Commun. 151, 1331 (2011).

    Article  Google Scholar 

  27. G.M. Tsangaris, G.C. Psarras, and N. Kouloumbi, J. Mater. Sci. 33, 2027 (1998).

    Article  Google Scholar 

  28. R. Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994).

    Article  Google Scholar 

  29. A.K. Jonscher, Dielectric Relaxation in Solids (London: Chelsea Dielectric Press, 1996).

    Google Scholar 

  30. E.F. Hairetdinov, N.F. Uvarov, H.K. Patel, and S.W. Martin, Phys. Rev. B 50, 13259 (1994).

    Article  Google Scholar 

  31. K. Funke, Prog. Solid State Chem. 22, 111 (1993).

    Article  Google Scholar 

  32. S. Summerfield, Philos. Mag. B 52, 9 (1985).

    Article  Google Scholar 

  33. A.A. Ali and M.H. Shaaban, Bull. Mater. Sci. 34, 491 (2011).

    Article  Google Scholar 

Download references

Acknowledgement

Rajesh Mukherjee acknowledges the University Grants Commission (UGC) for the award of a Teacher Fellowship (No. F. TF. WB-010-02/13-14(ERO)) under the College Faculty Development Programme. Alo Dutta thanks the Department of Science and Technology of India for providing the financial support through DST Fast Track Project under Grant No. SR/FTP/PS-175/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, R., Dutta, A. & Sinha, T.P. Dielectric Relaxation of Rare Earth Ordered Double Perovskite Oxide Ba2ErTaO6 . J. Electron. Mater. 45, 846–852 (2016). https://doi.org/10.1007/s11664-015-4222-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4222-6

Keywords

Navigation