Skip to main content
Log in

Thickness Effect on Properties of Sprayed In2S3 Films for Photovoltaic Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Indium sulfide (In2S3) films have been deposited on soda-lime glass substrates using a spray technique (CSP). Indium chloride and thiourea were used as precursors at a molar ratio of S:In = 2. The substrate temperature was fixed at 340°C. The effect of film thickness on the structural, morphological and optical properties of the as-deposited films has been studied. These films were characterized by x-ray diffraction, scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical absorption spectroscopy. As-prepared samples were polycrystalline with a cubic structure and (400) as preferential orientation. Their grain size increased from 35 nm to 41 nm with increasing thickness whereas the dislocation density and microstrain of the films decreased with the increase of thickness. Both SEM and AFM images showed that the films were homogenous with an increase of the surface roughness with the increase of thickness. The optical transmittance of the films decreased from 80% to 20% in the visible and infrared regions when the thickness was increased from 0.78 μm to 6.09 μm. The optical band gap E g was found to be in the range of 2.75–2.19 eV and showed a decrease with film thickness. Based on the measured optical constants (n and k), a Wemple–Didomenico model was used to determine the values of single oscillator energy (E 0), dispersion energy (E d), optical band gap (E g) and high frequency dielectric constant (\( \varepsilon_{\infty } \)). In addition, these films exhibited n-type conductivity and were highly resistive. These results confirm that In2S3 thin films are a promising alternative as a buffer-layer material for CuInGa(S,Se)2-based solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Prog. Photovoltaics Res. Appl. 19, 894 (2011).

    Article  Google Scholar 

  2. J.L. Shay and B. Tell, Surf. Sci. 37, 748 (1973).

    Article  Google Scholar 

  3. N. Barreau, Sol. Energy 83, 363 (2009).

    Article  Google Scholar 

  4. R.H. Bube and W.H. McCarroll, J. Phys. Chem. Solids 10, 333 (1959).

    Article  Google Scholar 

  5. S. Cingarapu, M.A. Ikenberry, D.B. Hamal, C.M. Sorensen, K. Hohn, and K.J. Klabunde, Langmuir 28, 3569 (2012).

    Article  Google Scholar 

  6. A. Timoumi and H. Bouzouita, IJRER2 (2013) 188.

  7. B. Asenjo, C. Sanz, C. Guillén, A.M. Chaparro, M.T. Gutiérrez, and J. Herrero, Thin Solid Films 515, 6041 (2007).

    Article  Google Scholar 

  8. N. Bouguila, A. Timoumi, and H. Bouzouita, Eur. Phys. J. Appl. Phys. 65, 20304 (2014).

    Article  Google Scholar 

  9. N. Barreau, J.C. Bernède, C. Deudon, L. Brohan, and S. Marsillac, Thin Solid Films 241, 4 (2002).

    Google Scholar 

  10. P.G.S. Abadi, M.S. Niasari, and F. Davar, Superlattices Microstruct. 53, 76 (2013).

    Article  Google Scholar 

  11. B. Mari, M. Mollar, D. Soro, R. Henriquez, R. Schrebler, and H. Gomez, Int. J. Electrochem. Sci. 8, 3510 (2013).

    Google Scholar 

  12. N. Revathi, P. Prathap, and K.T.R. Reddy, Solid State Sci. 11, 1288 (2009).

    Article  Google Scholar 

  13. D. Perednis and L.J. Gauckler, J. Electroceram. 14, 103 (2005).

    Article  Google Scholar 

  14. K. Otto, A. Katerski, O. Volobujeva, A. Mere, and M. Krunks, Energy Procedia 3, 63 (2011).

    Article  Google Scholar 

  15. JCPDS (Joint Commitee on Powder Diffraction Standards) card 25-390.

  16. R. Kayali, M. Ari, M. Oztas, M. Bedir, and F. Aksoy, Chin. Phys. Lett. 26, 017106 (2009).

    Article  Google Scholar 

  17. H.W. Liu, L. Meng, and L. Zhang, Thin Solid Films 479, 8 (2005).

    Google Scholar 

  18. N. Bouguila, H. Bouzouita, E. Lacaze, A.B. Amara, H. Bouchriha, and A. Dhouib, J. Phys III Trance 7, 1647 (1997).

    Google Scholar 

  19. A.S. Cherian, M. Mathew, C.S. Kartha, and K.P. Vijayakumar, Thin Solid Films 518, 1779 (2010).

    Article  Google Scholar 

  20. B.D. Cullity, Elements of X-ray Diffraction (Reading: Addison-Wesley, 1978).

    Google Scholar 

  21. P.P. Sahay and R.K. Nath, Sens. Actuators B: Chem. 2, 654 (2008).

    Article  Google Scholar 

  22. K. Ravichandran and P. Philominathan, Sol. Energy 82, 1062 (2008).

    Article  Google Scholar 

  23. V. Bilgin, S. Kose, F. Atay, and I. Akyuz, Mater. Chem. Phys. 94, 103 (2005).

    Article  Google Scholar 

  24. P. Roy and S.K. Srivastava, Thin Solid Films 496, 293 (2006).

    Article  Google Scholar 

  25. T. Asikainen, M. Ritala, and M. Leskela, M. leskela. Appl. Surf. Sci. 82–83, 122 (1994).

    Article  Google Scholar 

  26. J. Pei, F.L. Degertekin, B.T. KhuriYakub, and K.C. Saraswat, Appl. Phys. Lett. 66, 2177 (1995).

    Article  Google Scholar 

  27. J. Bougnot, S. Duchemin, and M. Savelli, Sol. Cells 16, 221 (1986).

    Article  Google Scholar 

  28. R. Swanepoel, J. Phys. E 16, 1214 (1983).

    Article  Google Scholar 

  29. M.C. Lόpez, J.P. Espinos, F. Martίn, D. Leinen, and J.R. Ramos-Barrado, J. Cryst. Growth 285, 66 (2005).

    Article  Google Scholar 

  30. C. Agashe, J. Hupkes, G. Schope, and M. Berginski, Sol. Energy Mat. Sol. Cells 93, 1256 (2009).

    Article  Google Scholar 

  31. B.Z. Dong, G.J. Fang, J.F. Wang, W.J. Guan, and X.Z. Zhao, J. Appl. Phys. 101, 033713 (2007).

    Article  Google Scholar 

  32. Y.C. Liu, S.K. Tung, and J.H. Hsieh, J. Cryst. Growth 287, 105 (2006).

    Article  Google Scholar 

  33. T. Çolakoğlu, M. Parlak, and S. Özder, J. Non-cryst. Solids 354, 3630 (2008).

    Article  Google Scholar 

  34. J. Tauc, Optical Properties of Solids (Amsterdam: North-Holland, 1970), p. 903.

    Google Scholar 

  35. M. Calixto-Rodriguez, A. Tiburcio-Silver, A. Ortiz, and A. Sanchez-Juarez, Thin Solid Films 480–481, 133 (2005).

    Article  Google Scholar 

  36. T.T. John, S. Bini, Y. Kashiwaba, T. Abe, Y. Yasuhiro, C.S. Kartha, and K.P. Vijayakumar, Semicond. Sci. Technol. 18, 491 (2003).

    Article  Google Scholar 

  37. C.D. Lokhande, A. Ennaoui, P.S. Patil, M. Giersig, K. Diesner, M. Muller, and H. Tributsch, Thin Solid Films 340, 18 (1999).

    Article  Google Scholar 

  38. N. Revathi, P. Prathap, R.W. Miles, and K.T.R. Reddy, Sol. Energy Mater. Sol. Cells 94, 1487 (2010).

    Article  Google Scholar 

  39. N. Barreau, S. Marsillac, D. Albertini, and J.C. Bernede, Thin Solid Films 403–404, 331 (2002).

    Article  Google Scholar 

  40. J.F. Trigo, B. Asenjo, J. Herrero, and M.T. Gutiérrez, Sol. Energy Mater. Sol. Cells 92, 1145 (2008).

    Article  Google Scholar 

  41. B. Asenjo, C. Guillén, A.M. Chaparro, E. Saucedo, V. Bermudez, D. Lincot, J. Herrero, and M.T. Gutiérrez, J. Phys. Chem. Solids 71, 1629 (2010).

    Article  Google Scholar 

  42. Y. Ji, Y. Ou, Z. Yu, Y. Yan, D. Wang, C. Yan, L. Liu, Y. Zhang, and Y. Zhao, Surf. Coat. Technol. 276, 587 (2015).

    Article  Google Scholar 

  43. G.R. Gopinath, R.W. Miles, and K.T.R. Reddy, Energy Procedia 34, 399 (2013).

    Article  Google Scholar 

  44. P. Rao and S. Kumar, Thin Solid Films 524, 93 (2012).

    Article  Google Scholar 

  45. J. Melsheimer and D. Ziegler, Thin Solid Films 129, 35 (1985).

    Article  Google Scholar 

  46. K. Boubaker, Eur. Phys. J. Plus 126, 1 (2011).

    Article  Google Scholar 

  47. F. Abeles, Optical Properties of Solids (London: North-Holland, 1972).

    Google Scholar 

  48. N. Revathi, P. Prathap, Y.P.V. Subbaiah, and K.T.R. Reddy, J. Phys. D Appl. Phys. 41, 155404 (2008).

    Article  Google Scholar 

  49. L.J. Meng, J. Gao, M.P. dos Santos, X. Wang, and T. Wang, Thin Solid Films 516, 1365 (2008).

    Article  Google Scholar 

  50. H.G. Tompkins and W.A. McGahan, Spectroscopic Ellipsometry and Reflectometry (New York: Wiley, 1999).

    Google Scholar 

  51. S.H. Wemple and M. Didomenico, Phys. Rev B 1, 193 (1970).

    Article  Google Scholar 

  52. K. Tanaka, Thin Solid Films 66, 271 (1980).

    Article  Google Scholar 

  53. A. Mhamdi, B. Ouni, A. Amlouk, K. Boubaker, and M. Amlouk, J. Alloys Comp. 582, 810 (2014).

    Article  Google Scholar 

  54. G.A. Mohamed, E.M. Mohamed, and A. Abu El-Fadl, Phys. B 308–310, 949 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Belhadj Amara (Faculté des Sciences de Bizerte, Tunisia) and Z. Fakhfakh (Faculté des Sciences de Sfax, Tunisia), for XRD and MEB measurements, respectively. We gratefully acknowledge Professor S. Alaya (Faculté des Sciences de Gabès, Tunisia), for the manuscript revision and the useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Bouguila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouguila, N., Kraini, M., Halidou, I. et al. Thickness Effect on Properties of Sprayed In2S3 Films for Photovoltaic Applications. J. Electron. Mater. 45, 829–838 (2016). https://doi.org/10.1007/s11664-015-4216-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4216-4

Keywords

Navigation