Skip to main content
Log in

Performance of a Polymer-Based Sensor Package at Extreme Temperature

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

There is an increasing need for inexpensive packaging structures for demanding industrial electronics applications. This paper studies the usability of a polymer-based sensor package at very high temperatures. Resistance-based temperature sensors were attached with polymer-based electrically conductive adhesives (ECAs) onto flexible polyimide (PI) printed circuit boards (PCB). The materials used in the structure were not specifically designed for high temperature use. However, they were all commercial materials, easily available and typically reliable under normal use conditions of consumer electronics. The samples were aged at 240°C and electrically monitored during the test. Electrically, the sensor samples were observed to fail after 100 h of aging. However, material characterisation revealed that the materials started to degrade much earlier. The adhesive layer in the PI PCB and the ECA materials started to degrade after just 30 h of aging at 240°C, and mechanically the materials were observed to become brittle, making them prone to cracking and delamination. The results showed that such a polymer package is usable at 240°C for relatively short exposure times, but under longer exposure times the mechanical reliability of the package deteriorates and this needs to be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.R.N. Childs, Practical Temperature Measurement (Oxford: Butterworth-Heinemann, 2001), pp. 145–193.

    Book  Google Scholar 

  2. I.R. Sinclair, Sensors and Transducers, 3rd ed. (Oxford: Butterworth-Heinemann, 2001), pp. 87–115.

    Book  Google Scholar 

  3. B.D. Moore, Microprocess. Microsys. 23, 181 (1999).

    Article  Google Scholar 

  4. L. Frisk, A. Parviainen, and K. Kokko, Proceedings of Electronics System Integration Technology Conferences, 2010, pp. 1–6.

  5. C. Harper, High Performance Printed Circuit Boards (New York: McGraw-Hill, 2000), pp. 5.1–38.

  6. C. Coombs, Coombs’ Printed Circuits Handbook, 5th edn. (McGraw-Hill, 2001) pp. 56.3–22.

  7. T. Nakao, Proceedings of Electronic Manufacturing Technology Symposium, 1989, pp. 132–135.

  8. V. Fronz, Circuit Word 17, 15 (1991).

    Article  Google Scholar 

  9. C.A. Harper, High Performance Printed Circuit Boards (McGraw-Hill, 2000), p. 5.9.

  10. Y.C. Lin and J. Zhong, J. Mater. Sci. 43, 3072 (2008).

    Article  Google Scholar 

  11. S. Ebnesajjad, Adhesive Technology Handbook, 2nd ed. (Norwich, NY: William Andrew, 2009), pp. 63–135.

    Google Scholar 

  12. Y. Li and C.P. Wong, Mater. Sci. Eng., R 51, 1 (2006).

    Article  Google Scholar 

  13. M.J. Yim and K.W. Paik, Int. J. Adhes. Adhes. 26, 304 (2006).

    Article  Google Scholar 

  14. K. Gilleo, Solder. Surf. Mt. Tech. 7, 12 (1995).

    Article  Google Scholar 

  15. L. Ali, Y.C. Chan, and M.O. Alam, Solder. Surf. Mt. Tech. 17, 20 (2005).

    Article  Google Scholar 

  16. S. Barto, J. Cinert, and P. Mach, Proceedings of 17th IEEE International Symposium for Design and Technology in Electronic Packaging, 2011, pp. 305–308.

  17. G. Dreezen, L. Theunissen, and G. Luyckx. Proceedings of 2nd IEEE International Interdisciplinary Conference on Portable Information Devices and 7th IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics, 2008, pp. 1–6.

  18. O. Rusanen and J. Lenkkeri, IEEE Trans. Compon., Packag., Manuf. Technol. B 18, 320 (1995).

  19. R. Kisiel and Z. Szczepańsk, Microelectron. Reliab. 49, 627 (2009).

    Article  Google Scholar 

  20. L. Gao, X. Chen, and H. Gao, Int. J. Adhes. Adhes. 33, 75 (2012).

    Article  Google Scholar 

  21. W. Du, H. Cui, S. Chen, Z. Yuan, L. Ye, and J. Liu, Proceedings of 12th IEEE International Conference on Electronic Packaging Technology & High Density Packaging, 2011, pp. 1–3.

  22. K. Suganuma, Proceedings of 6th IEEE Polymers and Adhesives in Microelectronics and Photonics Conference, 2007, pp. 30–35.

  23. J.B. Jullien, H. Frémont, and J.Y. Deletage, Microelectron. Reliab. 53, 1597 (2013).

    Article  Google Scholar 

  24. M.F. Sousa, S. Riches, C. Johnston, and P.S. Grant, Proceedings of Electronics System Integration Technology Conference, 2010, pp. 1–6.

  25. B. Öztürk, P. Gromala, C. Silber, K.M.B. Jansen, and L.J. Ernst, Proceedings of 16th IEEE Electronics Packaging Technology Conference, 2014, pp. 411–420.

  26. V.R. Manikam and K.Y. Cheong, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 457 (2011).

    Article  Google Scholar 

  27. L. Frisk, S. Lahokallio, and M. Mostofizadeh, Proceedings of IMAPS Nordic Conference, 2012.

  28. S.C. Tan, Y.C. Chan, Y.W. Chiu, and C.W. Tan, Microeletron. Reliab. 44, 495 (2004).

    Article  Google Scholar 

  29. J. Liu, O. Salmela, J. Särkkä, J.E. Morris, P.-E. Tegehall, and C. Andersson, Reliability of Microtechnology—Interconnects, Devices and Systems (New York: Springer, 2011), p. 19.

    Google Scholar 

  30. W.D. Brown, Advanced Electronic Packaging—With Emphasis on Multichip Modules (New York: IEEE Press, 1999).

    Google Scholar 

  31. S. Lahokallio and L. Frisk, Proceedings of 62nd Electronic Components and Technology Conference, 2012, pp. 423–429.

  32. S. Lahokallio, J. Kiilunen, and L. Frisk, Microelectron. Reliab. 54, 2017 (2014).

    Article  Google Scholar 

  33. H.-S. Wang, B.-S. Chiou, and J.-S. Jiang, J. Mater. Sci- Mater. El. 10, 267 (1999).

    Article  Google Scholar 

  34. P.F. Green and L.L. Berger, Thin Solid Films 224, 209 (1993).

    Article  Google Scholar 

  35. X. Bi, Z. Li, X. Zhuang, Z. Han, and W. Yang, Sci. Total Environ. 409, 5126 (2011).

    Article  Google Scholar 

  36. J. Lambert, H. Shurvell, D. Lightner, and R. Cooks, Organic Structural Spectroscopy Part II (Englewood Cliffs, NJ: Prentice-Hall Inc, 1998), pp. 152–251.

    Google Scholar 

  37. E. Bormashenko, R. Pogreb, A. Sheshnev, E. Shulzinger, Y. Bormashenko, and S. Sutovski, Polym. Degrad. Stab. 72, 125 (2001).

  38. B. Mailhot, S. Morlat-tjerias, M. Ouahioune, and J. Gardette, Macromol. Chem. Physic. 206, 575 (2005).

    Article  Google Scholar 

  39. P. Musto, G. Ragosta, P. Russo, and L. Mascia, Macromol. Chem. Physic. 202, 3445 (2001).

    Article  Google Scholar 

  40. C. Damian, E. Espuche, and M. Escoubes, Polym. Degrad. Stab. 72, 447 (2001).

    Article  Google Scholar 

  41. A. Seppälä and E. Ristolainen, Microelectron. Reliab. 44, 639 (2004).

    Article  Google Scholar 

  42. M.J. Rizvi, Y.C. Chan, C. Bailey, H. Lu, and A. Sharif, Solder. Surf. Mt. Tech. 17, 40 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanna Lahokallio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahokallio, S., Hoikkanen, M., Marttila, T. et al. Performance of a Polymer-Based Sensor Package at Extreme Temperature. J. Electron. Mater. 45, 1184–1200 (2016). https://doi.org/10.1007/s11664-015-4198-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4198-2

Keywords

Navigation