Skip to main content
Log in

Consistency in Al/CuPc/n-Si Heterojunction Diode Parameters Extracted Using Different Techniques

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper reports fabrication and characterization of an Al/CuPc/n-Si heterojunction diode. The heterojunction was fabricated by depositing the active organic semiconducting material copper phthalocyanine (CuPc) on the n-Si substrate using the thermal vacuum evaporation technique. Electrical characterization of the fabricated heterojunction was carried out at ambient conditions. Various diode parameters, such as the ideality factor (n), barrier height (\(\Phi_{\rm{b}}\)), and series resistance (R s), were extracted from the current–voltage (IV) characteristic curve. These parameters are consistent with techniques used by Cheung, Norde and Hernandez et al. Furthermore these parameters are consistent with capacitance-voltage (C–V) characterization method. The conduction mechanism at the interface of CuPc and n-Si was also investigated. The surface morphology of the CuPc film was studied using atomic force microscopy and scanning electron microscopy. The optical bandgap of the CuPc film was calculated from the absorption spectrum using Tauc’s law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Simonsen, B. Handke, Z. Li, and P. Møller, Surf. Sci. 603, 1270 (2009).

    Article  Google Scholar 

  2. Y. Jung, J. Seo, J.H. Kim, D.R. Whang, S.H. Gihm, C.R. Park, and S.Y. Park, Synth. Met. 160, 1287 (2010).

    Article  Google Scholar 

  3. J. Clark and G. Lanzani, Nat. Photonics 4, 438 (2010).

    Article  Google Scholar 

  4. A. Pucci, F. Donati, S. Nazzi, G.U. Barretta, G. Pescitelli, L. Di Bari, and G. Ruggeri, React. Funct. Polym. 70, 951 (2010).

    Article  Google Scholar 

  5. H. Sirringhaus, N. Tessler, and R.H. Friend, Science 280, 1741 (1998).

    Article  Google Scholar 

  6. C. Weder, C. Sarwa, A. Montali, C. Bastiaansen, and P. Smith, Science 279, 835 (1998).

    Article  Google Scholar 

  7. C. Dimitrakopoulos and P. Malenfant, Adv. Mater. 14, 99 (2002).

    Article  Google Scholar 

  8. R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, and M. Muccini, Nat. Mater. 9, 496 (2010).

    Article  Google Scholar 

  9. M.H. Sayyad, M. Saleem, K.S. Karimov, M. Yaseen, M. Ali, K.Y. Cheong, and A.F.M. Noor, Appl. Phys. A 98, 103 (2010).

    Article  Google Scholar 

  10. Ö. Güllü and A. Türüt, Sol. Energy Mater. Sol. Cells 92, 1205 (2008).

    Article  Google Scholar 

  11. M.E. Aydin, F. Yakuphanoglu, J.-H. Eom, and D.-H. Hwang, Phys. B 387, 239 (2007).

    Article  Google Scholar 

  12. R. Bao, C. Wang, L. Dong, R. Yu, K. Zhao, Z.L. Wang, and C. Pan, Adv. Funct. Mater. 25, 2884 (2015).

    Article  Google Scholar 

  13. K. Akkılıç, Y. Ocak, T. Kılıçoğlu, S. Ilhan, and H. Temel, Curr. Appl. Phys. 10, 337 (2010).

    Article  Google Scholar 

  14. Z. Ahmad and M.H. Sayyad, Physica E 41, 631 (2009).

    Article  Google Scholar 

  15. T. Kılıçoğlu, Thin Solid Films 516, 967 (2008).

    Article  Google Scholar 

  16. Ö. Güllü, Ş. Aydoğan, and A. Türüt, Microelectron. Eng. 85, 1647 (2008).

    Article  Google Scholar 

  17. E.H. Rhoderick and R. Williams, Metal-Semiconductor Contacts (Oxford: Clarendon, 1988), p. 219.

    Google Scholar 

  18. R. Van Meirhaeghe, W. Laflere, and F. Cardon, J. Appl. Phys. 76, 403 (1994).

    Article  Google Scholar 

  19. J. Drechsel, B. Männig, D. Gebeyehu, M. Pfeiffer, K. Leo, and H. Hoppe, Org. Electron. 5, 175 (2004).

    Article  Google Scholar 

  20. F.H. Moser and A.L. Thomas, The Phthalocyanines. Manufacture and Applications, vol. 2 (Boca Raton, FL: CRC Press, 1983).

    Google Scholar 

  21. K.Y. Law, Chem. Rev. 93, 449 (1993).

    Article  Google Scholar 

  22. R. Taguchi, T. Kobayashi, and J. Muto, J. Mater. Sci. Lett. 13, 1320 (1994).

    Article  Google Scholar 

  23. A. Leznoff and A. Lever, Phthalocyanines, Properties and Applications, vol. 3 (New York: VCH, 1993).

    Google Scholar 

  24. F. Yang and S.R. Forrest, Nat. Mater. 4, 37 (2005).

    Article  Google Scholar 

  25. S. Ambily and C. Menon, Solid State Commun. 94, 485 (1995).

    Article  Google Scholar 

  26. A. Komolov and P.J. Møller, Colloids Surf. A 239, 49 (2004).

    Article  Google Scholar 

  27. L. Lei, H. Wang, Y. Zhang, X. Li, J. Mu, G. Wang, Z. Jiang, and S. Zhang, Macromol. Res. 18, 331 (2010).

    Article  Google Scholar 

  28. Z. Zeng, X. Xiao, Z. Gui, and L. Li, J. Membr. Sci. 136, 153 (1997).

    Article  Google Scholar 

  29. M. Szklarczyk, E. Wierzbinski, K. Bienkowski, and M. Strawski, Electrochim. Acta 51, 1036 (2005).

    Article  Google Scholar 

  30. W. Mtangi, F. Auret, C. Nyamhere, P.J. van Rensburg, M. Diale, and A. Chawanda, Phys. B 404, 1092 (2009).

    Article  Google Scholar 

  31. K. Okei, Phys. Soc. Jpn. 40, 140 (1976).

    Article  Google Scholar 

  32. A.T. Davidson, J. Chem. Phys. 77, 168 (1982).

    Article  Google Scholar 

  33. Q. Chen, D. Gu, J. Shu, X. Tang, and F. Gan, Mater. Sci. Eng. B 25, 171 (1994).

    Article  Google Scholar 

  34. G. Kumar, J. Thomas, N. George, B. Kumar, P. Radhakrishnan, V. Nampoori, C. Vallabhan, and N. Unnikrishnan, Phys. Chem. Glass Technol. Eur. J. Glass Sci. Technol. Part B 41, 89 (2000).

    Google Scholar 

  35. A. Farag, Opt. Laser Technol. 39, 728 (2007).

    Article  Google Scholar 

  36. Q. Yang, Y. Liu, C. Pan, J. Chen, X. Wen, and Z.L. Wang, Nano Lett. 13, 607 (2013).

    Article  Google Scholar 

  37. M.B. Reddy, A.A. Kumar, V. Janardhanam, V.R. Reddy, and P.N. Reddy, Curr. Appl. Phys. 9, 972 (2009).

    Article  Google Scholar 

  38. Ö. Yüksel, A. Selcuk, and S. Ocak, Phys. B 403, 2690 (2008).

    Article  Google Scholar 

  39. S. Kumar, Y. Katharria, S. Kumar, and D. Kanjilal, Solid State Electron. 50, 1835 (2006).

    Article  Google Scholar 

  40. V. Janardhanam, A.A. Kumar, V.R. Reddy, and P.N. Reddy, J. Alloys Compd. 485, 467 (2009).

    Article  Google Scholar 

  41. H. Altuntas, A. Bengi, U. Aydemir, T. Asar, S. Cetin, I. Kars, S. Altindal, and S. Ozcelik, Mater. Sci. Semicond. Process. 12, 224 (2009).

    Article  Google Scholar 

  42. Ö. Güllü, S. Asubay, Ş. Aydoğan, and A. Türüt, Physica E 42, 1411 (2010).

    Article  Google Scholar 

  43. S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

    Article  Google Scholar 

  44. J. Lee, D. Hwang, C. Park, S. Kim, and S. Im, Thin Solid Films 451, 12 (2004).

    Article  Google Scholar 

  45. A. Carbone, B. Kotowska, and D. Kotowski, Phys. Rev. Lett. 95, 236601 (2005).

    Article  Google Scholar 

  46. M. Hernández, C. Alonso, and J. Pena, J. Phys. D 34, 1157 (2001).

    Article  Google Scholar 

  47. T.B. Jomaa, L. Beji, A. Ltaeif, and A. Bouazizi, Mater. Sci. Eng. C 26, 530 (2006).

    Article  Google Scholar 

  48. J. Simon, J.-J. André, J. Lehn, and C.W. Rees, Metallophthalocyanines (Berlin: Springer, 1985), p. 73.

    Google Scholar 

  49. A. Bohler, P. Urbach, J. Schobel, S. Dirr, H. Johannes, S. Wiese, D. Ammermann, and W. Kowalsky, Physica E 2, 562 (1998).

    Article  Google Scholar 

  50. M. Shah, M. Sayyad, K.S. Karimov, and M. Maroof-Tahir, Phys. B 405, 1188 (2010).

    Article  Google Scholar 

  51. R. Schmechel and H. von Seggern, Phys. Status Solidi A 201, 1215 (2004).

    Article  Google Scholar 

  52. P. Chattopadhyay, Solid State Electron. 38, 739 (1995).

    Article  Google Scholar 

  53. Y. Lee, J. Park, and J. Choi, Opt. Mater. 21, 433 (2003).

    Article  Google Scholar 

  54. S. Dalui and A. Pal, Appl. Surf. Sci. 254, 3540 (2008).

    Article  Google Scholar 

  55. F. Reis, D. Mencaraglia, S.O. Saad, I. Séguy, M. Oukachmih, P. Jolinat, and P. Destruel, Synth. Met. 138, 33 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Dr. Khasan S. Karimov, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology (GIKI), Topi, Swabi, Pakistan and Mr. Qayum, Department of Physics, COMSATS Institute of Information Technology, Islamabad, Pakistan for providing experimental facilities. We are grateful to the Higher Education Commission Pakistan for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Ullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, I., Shah, M., Khan, M. et al. Consistency in Al/CuPc/n-Si Heterojunction Diode Parameters Extracted Using Different Techniques. J. Electron. Mater. 45, 1175–1183 (2016). https://doi.org/10.1007/s11664-015-4163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4163-0

Keywords

Navigation