Skip to main content

Advertisement

Log in

The Influence of Molecular Configuration on the Thermoelectrical Properties of Poly(3-hexylthiophene)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Poly(3-hexylthiophene) (P3HT) films were prepared by using raw P3HT powders with different molecular configurations through solution processing and doped with ferric salt of triflimide anions [Fe(TFSI)3], and their thermoelectric (TE) properties were studied. It was found that P3HT with highly regular molecular configuration formed highly ordered chain arrangements in P3HT film (denoted rr-P3HT film), while P3HT with irregular molecular configuration formed random chain arrangements in P3HT film (denoted ra-P3HT film). The ordered chain arrangement in rr-P3HT not only improved the charge carrier mobility but also contributed to produce more carriers, thereby remarkably improving the electrical conductivity. The electrical conductivity of rr-P3HT film was up to 96.1 S/cm, more than two orders of magnitude higher than that of ra-P3HT film. Consequently, the power factor of rr-P3HT film reached 17.10 μW/(m K2), about one order of magnitude higher than that of ra-P3HT film and among the best values for pure P3HT TE materials. This study suggests that P3HT with highly regular configuration contributes to form highly ordered molecular chain arrangements, resulting in improved TE properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Zhang, Y. Sun, W. Xu, and D. Zhu, Adv. Mater. 26, 6829 (2014).

    Article  Google Scholar 

  2. Y. Chen, Y. Zhao, and Z. Liang, Energy Environ. Sci. 8, 401–422 (2015).

    Article  Google Scholar 

  3. M. Chang, J. Lee, N. Klenhenz, B. Fu, and E. Reichmanis, Adv. Funct. Mater. 24, 4457 (2014).

    Article  Google Scholar 

  4. D.M. DeLongchamp, R.J. Kline, Y. Jung, D.S. Germack, E.K. Lin, A.J. Moad, L.J. Richter, M.F. Toney, M. Heeney, and I. McCulloch, ACS Nano. 3, 780 (2009).

    Article  Google Scholar 

  5. Y. He, H. Chen, J. Hou, and Y. Li, J. Am. Chem. Soc. 132, 1377 (2010).

    Article  Google Scholar 

  6. J. Sun, M.L. Yeh, B.J. Jung, B. Zhang, J. Feser, A. Majumdar, and H.E. Katz, Macromolecules 43, 2897 (2010).

    Article  Google Scholar 

  7. Y. Xuan, X. Liu, S. Desbief, P. Leclere, M. Fahlman, R. Lazzaroni, M. Berggren, J. Cornil, D. Emin, and X. Crispin, Phys. Rev. B 82, 115454 (2010).

    Article  Google Scholar 

  8. M. He, J. Ge, Z. Lin, and F. Qiu, Energy Environ. Sci. 5, 8351 (2012).

    Article  Google Scholar 

  9. Q. Zhang, Y. Sun, W. Xu, and D. Zhu, Energy Environ. Sci. 5, 9639–9644 (2012).

    Article  Google Scholar 

  10. K. Yoshino, Jpn. J. Appl. Phys. 29, L995 (1990).

    Article  Google Scholar 

  11. K. See, J. Feser, and R. Segalman, Nano. Lett. 10, 4664 (2010).

    Article  Google Scholar 

  12. N. Coats, S. Yee, B. McCulloch, R. Segalman, and J. Urban, Adv. Mater. 25, 1629 (2013).

    Article  Google Scholar 

  13. Q. Yao, Q. Wang, L. Wang, Y. Wang, J. Sun, H. Zeng, Z. Jin, X. Huang, and L. Chen, J. Mater. Chem. A 2 8, 2634 (2014).

    Article  Google Scholar 

  14. A.B. Kaiser and V. Skakalova, Chem. Soc. Rev. 40, 3786 (2011).

    Article  Google Scholar 

  15. A.B. Kaiser, Adv. Mater. 13, 927 (2001).

    Article  Google Scholar 

  16. Q. Yao, L. Chen, W. Zhang, S. Liufu, and X. Chen, ACS Nano. 4, 2445 (2010).

    Article  Google Scholar 

  17. Q. Wang, Q. Yao, J. Chang, and L. Chen, J. Mater. Chem. 22, 17612 (2012).

    Article  Google Scholar 

  18. H.Y. Mao, B. Xu, and S. Holdcroft, Macromolecules 26, 1163 (1993).

    Article  Google Scholar 

  19. B. Xu and S. Holdcroft, Macromolecules 26, 4457 (1993).

    Article  Google Scholar 

  20. R.M. Souto Maior, K. Hinkelmann, H. Eckert, and F. Wudl, Macromolecules 23, 1268 (1990).

    Article  Google Scholar 

  21. T.-A. Chen and R.D. Rieke, J. Am. Chem. Soc. 114, 10087 (1992).

    Article  Google Scholar 

  22. T. Stocker, A. Kohler, and R.J. Moos, J. Polym. Sci. B 50, 976–983 (2012).

    Article  Google Scholar 

  23. J.L. Bredas and G.B. Street, Acc. Chem. Res. 18, 309 (1985).

    Article  Google Scholar 

  24. D. Ofer, R.M. Crooks, and M.S. Wrighton, J. Am. Chem. Soc. 112, 7869 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program, 2013CB632506), the Key Research Program of the Chinese Academy of Sciences (Grant No. KGZD-EW-T06), the National Natural Science Foundation of China (Grant No. 51102268), and the China Postdoctoral Science Foundation (Grant No. 2013M541554).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qin Yao or Lidong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, S., Yao, Q., Shi, W. et al. The Influence of Molecular Configuration on the Thermoelectrical Properties of Poly(3-hexylthiophene). J. Electron. Mater. 45, 1389–1396 (2016). https://doi.org/10.1007/s11664-015-4045-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4045-5

Keywords

Navigation