Skip to main content
Log in

Gum Tragacanth-Mediated Synthesis of Nanocrystalline ZnO Powder for Use in Varistors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Zinc oxide nanopowders were synthesized by a sol–gel method with gum tragacanth and zinc nitrate as raw materials. Gum tragacanth was used as stabilizer to control the mobility of zinc cations and the growth of the nanopowders. Thermo-gravimetric analysis, x-ray diffraction, Fourier-transform infrared spectroscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, and scanning electron microscopy were used to characterize the as-prepared samples. Zinc oxide (ZnO) nanoparticles calcined at different temperatures had a hexagonal wurtzite structure with average particle size ranging from 32.29 nm to 42.83 nm. The crystallinity of ZnO nanoparticles was improved by increasing the calcination temperature. The density of ZnO varistor ceramics sintered at 1150°C for 2 h in air was 5.46  g/cm3, which was 97.5% of the theoretical density, their breakdown voltage was 4572 V/cm, and their nonlinear coefficient was ~16.8. This method can be used as an excellent alternative method for synthesis of ZnO nanoparticles with a plant extract as a raw material. Our experimental results show our method had the advantage of improving the electrical performance of ZnO varistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.L. Wang, Mater. Sci. Eng. R 64, 33 (2009).

    Article  Google Scholar 

  2. M.M. Hassan, A.S. Ahmed, and M. Chaman, Mater. Res. Bull. 47, 3952 (2012).

    Article  Google Scholar 

  3. M. Darroudi, Z. Sabouri, and R.K. Oskuee, Ceram. Int. 40, 4827 (2014).

    Article  Google Scholar 

  4. C.K. Srikanth and P. Jeevanandam, J. Alloys Compd. 486, 677 (2009).

    Article  Google Scholar 

  5. Geeta Rani, J. Mater. Sci. Technol. 29, 1035 (2013).

    Article  Google Scholar 

  6. C.C. Zhang, Y.X. Hu, and W.Z. Lu, J. Eur. Ceram. Soc. 22, 61 (2002).

    Article  Google Scholar 

  7. R. Song, Y. Liu, and L. He, Solid State Sci. 10, 1563 (2008).

    Article  Google Scholar 

  8. Q. Li, Z. Kang, B. Mao, E. Wang, C. Wang, and C. Tian, et al., Mater. Lett. 62, 2531 (2008).

    Article  Google Scholar 

  9. H.Y. Xu, H. Wang, Y.C. Zhang, M.K. Zhu, B. Wang, and H. Yan, Ceram. Int. 30, 93 (2004).

    Article  Google Scholar 

  10. M. Hudlikar, S. Joglekar, and M. Dhaygude, et al., Mater. Lett. 75, 196 (2012).

    Article  Google Scholar 

  11. G. Sangeetha, and S. Rajeshwari, et al., Mater. Res. Bull. 46, 2560 (2011).

    Article  Google Scholar 

  12. M. Darroudi, Z. Sabouri, and R.K. Oskuee, et al., Nanomed. J. 1, 88 (2014).

    Google Scholar 

  13. M. Darroudi, and M. Sarani, et al., Ceram. Int. 40, 2863 (2014).

    Article  Google Scholar 

  14. Z.X. Ma, Y.X. Han, W.Z. Yin, F.J. Yu, Z.T. Yuan, and Y.D. Ma, Min. Metall. 14, 40 (2005).

    Google Scholar 

  15. W.W. He, Y.P. Li, and Z.Q. Chen, et al., Mater. Lett. 60, 2299 (2006).

    Article  Google Scholar 

  16. A. Kaschner, U. Haboeck, and M. Strassburg, et al., Appl. Phys. Lett. 80, 1909 (2002).

    Article  Google Scholar 

  17. J.H. Ryu, C.S. Lim, and K.H. Auh, J. Korean Chem. Soc. 39, 813 (2002).

    Google Scholar 

  18. J.R. Daniel, and R.L. Whistler, et al., Ullmann’s Encycl. Ind. Chem. A25, 1 (1994).

    Google Scholar 

  19. C.W. Nahm, Ceram. Int. 39, 2177 (2013).

    Google Scholar 

  20. D. Xung, X.N. Cheng, G.P. Zhao, J. Yang, and L.Y. Shi, Ceram. Int. 37, 201 (2011).

    Article  Google Scholar 

  21. M.A. Ashraf, A.H. Bhuiyan, M.A. Hakim, and M.T. Hossain, Mater. Sci. Eng. B 176, 855 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Changzhou Science and Technology Innovation Project (CC20140048, CC20130204) and the 2014 Research and Innovation Project for College Graduates of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-Hua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, TT., Wang, MH., Su, H. et al. Gum Tragacanth-Mediated Synthesis of Nanocrystalline ZnO Powder for Use in Varistors. J. Electron. Mater. 44, 3430–3435 (2015). https://doi.org/10.1007/s11664-015-3871-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3871-9

Keywords

Navigation