Skip to main content
Log in

Magnetic and Dielectric Property Studies in Fe- and NiFe-Based Polymer Nanocomposites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Metal–polymer composites were investigated for their microwave properties in the frequency range of 30–1000 MHz to assess their application as inductor cores and electromagnetic isolation shield structures. NiFe and Fe nanoparticles were dispersed in epoxy as nanocomposites, in different volume fractions. The permittivity, permeability, and loss tangents of the composites were measured with an impedance analyzer and correlated with the magnetic properties of the particle such as saturation magnetization and field anisotropy. Fe–epoxy showed lower magnetic permeability but improved frequency stability, compared to the NiFe–epoxy composites of the same volume loading. This is attributed to the differences in nanoparticle’s structure such as effective metal core size and particle-porosity distribution in the polymer matrix. The dielectric properties of the nanocomposites were also characterized from 30 MHz to 1000 MHz. The instabilities in the dielectric constant and loss tangent were related to the interfacial polarization relaxation of the particles and the dielectric relaxation of the surface oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Corr, Y.P. Rakovich, and Y.K. Gun’ko, Nanoscale Res. Lett. 3, 87 (2008).

    Article  Google Scholar 

  2. K.R. Reddy, W. Park, B.C. Sin, J. Noh, and Y. Lee, J. Colloid Interface Sci. 335, 34 (2009).

    Article  Google Scholar 

  3. J. Pyun, Polym. Rev. 47, 231 (2007).

    Article  Google Scholar 

  4. T.-I. Yang, R.N. Brown, L.C. Kempel, and P. Kofinas, J. Nanopart. Res. 12, 2967 (2010).

    Article  Google Scholar 

  5. P.M. Raj, H. Sharma, S. Samtani, D. Mishra, V. Nair, and R. Tummala, J. Mater. Sci. 24, 3448 (2013).

    Google Scholar 

  6. N.A. Burke, H.D. Stöver, and F.P. Dawson, Chem. Mater. 14, 4752 (2002).

    Article  Google Scholar 

  7. S. Sindhu, S. Jegadesan, A. Parthiban, and S. Valiyaveettil, J. Magn. Magn. Mater. 296, 104 (2006).

    Article  Google Scholar 

  8. B. Lindlar, M. Boldt, S. Eiden-Assmann, and G. Maret, Adv. Mater. 14, 1656 (2002).

    Article  Google Scholar 

  9. J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, and I. Jasiuk, Mat. Sci. Eng. A 393, 1 (2005).

    Article  Google Scholar 

  10. M.G. Wang, Z.K. Zhao, and S. Chen, Mater. Sci. Forum 745, 761 (2013).

    Google Scholar 

  11. G. Psarras, E. Manolakaki, and G. Tsangaris, Compos. Part A 34, 1187 (2003).

    Article  Google Scholar 

  12. N. Farhadyar, M.S. Sadjadi, K. Zare, and S. Rostamzadehmansoor, Defect Diffus. Forum 334, 19 (2013).

    Google Scholar 

  13. P. Hankare, R. Patil, A. Jadhav, K. Garadkar, and R. Sasikala, Appl. Catal. B 107, 333 (2011).

    Article  Google Scholar 

  14. H. Shokrollahi and K. Janghorban, J. Mater. Process. Tech. 189, 1 (2007).

    Article  Google Scholar 

  15. K.S. Suslick, M. Fang, and T. Hyeon, J. Am. Chem. Soc. 118, 11960 (1996).

    Article  Google Scholar 

  16. A. Berkowitz and K. Takano, J. Magn. Magn. Mater. 200, 552 (1999).

    Article  Google Scholar 

  17. D. Kim, D.-Y. Park, B. Yoo, P. Sumodjo, and N. Myung, Electrochim. Acta 48, 819 (2003).

    Article  Google Scholar 

  18. J. Snoek, Physica 14, 207 (1948).

    Article  Google Scholar 

  19. A. Verma, T. Goel, and R. Mendiratta, J. Magn. Magn. Mater. 210, 274 (2000).

    Article  Google Scholar 

  20. Y. Zhan, S. Wang, D. Xiao, J. Budnick, and W. Hines, IEEE Trans. Magn. 37, 2275 (2001).

    Article  Google Scholar 

  21. T. Kasagi, T. Tsutaoka, and K. Hatakeyama, IEEE Trans. Magn. 35, 3424 (1999).

    Article  Google Scholar 

  22. C. Kittel, Phys. Rev. 73, 155 (1948).

    Article  Google Scholar 

  23. B. Lu, X. Dong, H. Huang, X. Zhang, X. Zhu, J. Lei, and J. Sun, J. Magn. Magn. Mater. 320, 1106 (2008).

    Article  Google Scholar 

  24. A. Lagarkov and A. Sarychev, Phys. Rev. B 53, 6318 (1996).

    Article  Google Scholar 

  25. R. Pelster, A. Spanoudaki, and T. Kruse, J. Phys. D 37, 307 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pulugurtha Markondeya Raj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, H., Jain, S., Raj, .M. et al. Magnetic and Dielectric Property Studies in Fe- and NiFe-Based Polymer Nanocomposites. J. Electron. Mater. 44, 3819–3826 (2015). https://doi.org/10.1007/s11664-015-3801-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3801-x

Keywords

Navigation