Skip to main content
Log in

Dielectric Behavior and Magnetic Properties of Mn-Substituted Ni–Zn Ferrites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanocrystalline spinel ferrites of nominal stoichiometry Ni0.5Zn0.5Mn x Fe2−x O4 (x = 0.0, 0.1, 0.2, 0.3, 0.4) were synthesized by chemical co-precipitation. X-ray diffraction analysis revealed formation of a single cubic phase with no metal oxide secondary phase; increased intensity of peaks of the doped samples suggests that, in the range studied, substituents are completely dissolved in the cubic lattice. Grain size was measured by scanning electron microscopy, by use of the line intercept method. Dielectric measurements were obtained as a function of frequency in the range 20 Hz to 3 MHz. It was found that hopping conduction was the predominant mechanism of conduction in frequency-dependent alternating current conductivity. Conductivity relaxation of the charge carriers was examined by use of the electrical modulus formalism; the results were indicative of the presence of the non-Debye-type relaxation in the ferrites. The grain boundary contribution was clearly apparent from Cole–Cole plots. Hysteresis loops for all the samples were narrow with low values of coercivity and retentivity, indicative of the superparamagnetic nature of these samples. On the basis of these sample characteristics it is suggested that Ni–Zn–Mn ferrites may be potential candidates for hyperthermia applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Ali, M.U. Islam, M. Ishaque, H.M. Khan, M.N. Ashiq, and M.U. Rana, J. Magn. Magn. Mater. 324, 3773 (2012).

    Article  Google Scholar 

  2. T. Pannaparayil, R. Maranle, S. Komarneni, and S.G. Sankar, J. Appl. Phys. 64, 5641 (1988).

    Article  Google Scholar 

  3. M.H. Sousa and F.A. Tourinhou, J. Phys. Chem. B 105, 1168 (2001).

    Article  Google Scholar 

  4. F. Mazaleyrat and L.K. Varga, J. Magn. Magn. Mater. 215–216, 253 (2000).

    Article  Google Scholar 

  5. D.E. Speliotis, J. Magn. Magn. Mater. 193, 29 (1999).

    Article  Google Scholar 

  6. P.C. Dorsey, P. Lubitz, D.B. Chrisey, and J.S. Horwitz, J. Appl. Phys. 85, 6338 (1999).

    Google Scholar 

  7. A.S. Vaingankar, S.G. Kulkarni, and M.S. Sagare, J. Phys. IV France 07, 155 (1997).

    Article  Google Scholar 

  8. O.H. Kwon, Y. Fukushima, M. Sugimoto, and N. Hiratsuka, J. Phys. IV France 07, 165 (1997).

    Google Scholar 

  9. C.Y. Tsay, K.S. Liu, T.F. Lin, and I.N. Lin, J. Magn. Magn. Mater. 209, 189 (2000).

    Article  Google Scholar 

  10. T. Krishnaveni, B. RajiniKanth, V. Seetha Rama Raju, and S.R. Murthy, J Alloys Compd 414, 282 (2006).

    Article  Google Scholar 

  11. F. Li, H. Wang, L. Wang, and J. Wang, J. Magn. Magn. Mater. 309, 295 (2007).

    Article  Google Scholar 

  12. S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, and G. Li, J. Am. Chem. Soc. 126, 2782 (2004).

    Google Scholar 

  13. T. Hyeon, Y. Chung, J. Park, S.S. Lee, Y.W. Kim, and B.H. Park, J. Phys. Chem. B 106, 6831 (2002).

    Article  Google Scholar 

  14. Q. Chen and Z.J. Zhang, J. Appl. Phys. 73, 3156 (1998).

    Google Scholar 

  15. X. Niu and W. Du, Sens. Actuators B 99, 405 (2004).

    Article  Google Scholar 

  16. N. Ikenaga, Y. Ohgaito, H. Matsushima, and T. Suzuki, Fuel 83, 661 (2004).

    Article  Google Scholar 

  17. J.A. Toledo-Antonio, N. Nava, M. Martinez, and X. Bokhimi, Appl. Catal. A 234, 137 (2002).

    Article  Google Scholar 

  18. J. Qiu, C. Wang, and M. Gu, Mater. Sci. Eng., B 112, 1 (2004).

    Article  Google Scholar 

  19. G. Fan, Z. Gu, L. Yang, and F. Li, Chem. Eng. J. 155, 534 (2009).

    Article  Google Scholar 

  20. M. Kobayashi, H. Shirai, and M. Nunokawa, Ind. Eng. Chem. Res. 41, 2903 (2002).

    Article  Google Scholar 

  21. S. Gubbala, H. Nathani, K. Koizol, and R.D.K. Misra, J. Phys. B 348, 317 (2004).

    Article  Google Scholar 

  22. S.A. Saafan, T.M. Meaz, E.H. El-Ghazzawy, M.K. El Nimr, M.M. Ayad, and M. Bakr, J. Magn. Magn. Mater. 322, 2369 (2010).

    Article  Google Scholar 

  23. S. Singhal and K. Chandra, J. Solid State Chem. 180, 296 (2007).

    Article  Google Scholar 

  24. J.C. Aphesteguy, A. Damiani, D. DiGiovanni, and S.E. Jacobo, J. Phys. B 404, 2713 (2009).

    Article  Google Scholar 

  25. S. Nasir and M.A. Rehman, Phys. Scr. 84, 025603 (2011).

    Article  Google Scholar 

  26. J. Bao, Z. Ji, G. Zhilun, and L. Longtu, J. Magn. Magn. Mater. 250, 131 (2002).

    Article  Google Scholar 

  27. H. Mohseni, H. Shokrollahi, I. Sharifi, and K. Gheisari, J. Magn. Magn. Mater. 324, 3741 (2012).

    Article  Google Scholar 

  28. L. Deng, L. Ding, K. Zhou, S. Huang, Z. Hu, and B. Yang, J. Magn Magn. Mater. 323, 1895 (2011).

    Article  Google Scholar 

  29. S. Hussain, M.A. Rehman, A. Maqsood, and M.S. Awan, J. Cryst. Growth 297, 403 (2006).

    Article  Google Scholar 

  30. M. Chanda, Science of engineering materials, Vol. 3 (New Delhi: The Machmillan Company of India Ltd., 1980).

    Google Scholar 

  31. A.M. Shaikh, S.S. Bellad, and B.K. Chougule, J. Magn. Magn. Mater. 195, 384 (1999).

    Article  Google Scholar 

  32. K.G. Brooks, Y. Berta, and V.R.W. Amarakoon, J. Am. Ceram. Soc. 75, 3065 (1992).

    Article  Google Scholar 

  33. Y. Purushotham and P.V. Reddy, Int. J. Mod. Phys. B 10, 319 (1996).

    Article  Google Scholar 

  34. R.G. Kharabe, R.S. Devan, C.M. Kanamadi, and B.K. Chougule, Smart Mater. Struct. 15, N36 (2006).

    Article  Google Scholar 

  35. M.N. Ashiq, M.J. Iqbal, and I.H. Gul, J. Magn. Magn. Mater. 323, 259 (2011).

    Article  Google Scholar 

  36. I. Ali, M.U. Islam, M.N. Ashiq, M.A. Iqbal, H.M. Khan, and G. Murtaza, J. Magn. Magn. Mater. 362, 115 (2014).

    Article  Google Scholar 

  37. A.M. Abo El Ataa, M.K. El Nimr, S.M. Attia, D. El Kony, and A.H. Al-Hammadi, J. Magn. Magn. Mater. 297, 33 (2006).

    Article  Google Scholar 

  38. M. Irfan, M.U. Islam, I. Ali, M.A. Iqbal, N. Karamat, and H.M. Khan, Curr. Appl. Phys. 14, 112 (2014).

    Article  Google Scholar 

  39. M.A. El Hiti, J. Phys. D Appl. Phys. 29, 501 (1996).

    Article  Google Scholar 

  40. L. Ramajo, M. Reboredo, and M. Castro, Composites A: Appl. Sci. Manuf. 36, 1267 (2005).

    Article  Google Scholar 

  41. B.V.R. Chowdari and R. Gopalkrishnnan, Solid State Ion. 23, 225 (1987).

    Article  Google Scholar 

  42. S.A. Saafan, Phys. B 403, 2049 (2008).

    Article  Google Scholar 

  43. Y. Bai, J. Zhou, Z. Gui, and L. Li, J. Magn. Magn. Mater. 278, 208 (2004).

    Article  Google Scholar 

  44. M.G. Chourashiya, J.Y. Patil, S.H. Pawar, and L.D. Jadhav, Mater. Chem. Phys. 109, 39 (2008).

    Article  Google Scholar 

  45. M. Mozaffari, B. Behdadfar, and J. Amighian, J Pharm Sci 4, 115 (2008).

    Google Scholar 

  46. R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, and B. Jeyadevan, J. Magn. Magn. Mater. 298, 83 (2006).

    Article  Google Scholar 

  47. D. Shigeoka, H. Katayanagi, Y. Moro, S. Kimura, T. Mashino, and Y. Ichiyanagi, J. Phys 200, 122002 (2010).

    Google Scholar 

  48. I. Panneer Muthuselvam and R.N. Bhowmik, J. Magn. Magn. Mater. 322, 767 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Irfan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irfan, M., Niaz, N.A., Ali, I. et al. Dielectric Behavior and Magnetic Properties of Mn-Substituted Ni–Zn Ferrites. J. Electron. Mater. 44, 2369–2377 (2015). https://doi.org/10.1007/s11664-015-3770-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3770-0

Keywords

Navigation