Skip to main content
Log in

Improved Performance of Dye-Sensitized Solar Cells Fabricated from a Coumarin NKX-2700 Dye-Sensitized TiO2/MgO Core–Shell Photoanode with an HfO2 Blocking Layer and a Quasi-Solid-State Electrolyte

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Dye sensitized solar cells (DSSC) were fabricated from a coumarin NKX-2700 dye-sensitized core–shell photoanode and a quasi-solid-state electrolyte, sandwiched together, with a cobalt sulfide-coated counter electrode. The core–shell photoanode consisted of a composite mixture of 90% TiO2 nanoparticles and 10% TiO2 nanowires (TNPW) as core layer and MgO nanoparticles (MNP) as shell layer. Hafnium oxide (HfO2) was applied to the core–shell photoanode film as a blocking layer. TiO2 nanoparticles, TiO2 nanowires, and TNPW/MNP were characterized by x-ray diffractometry, scanning electron microscopy, and transmission electron microscopy. It was apparent from the UV–visible spectrum of the sensitizing dye coumarin NKX-2700 that its absorption was maximum at 525 nm. Power conversion efficiency (PCE) was greater for DSSC-1, fabricated with a core–shell TNPW/MNP/HfO2 photoanode, than for the other DSSC; its photovoltaic properties were: short circuit photocurrent J sc = 19 mA/cm2, open circuit voltage (V oc) = 720 mV, fill factor (FF) = 66%, and PCE (η) = 9.02%. The charge-transport and charge-recombination behavior of the DSSC were investigated by electrochemical impedance spectroscopy; the results showed that the composite core–shell film resulted in the lowest charge-transfer resistance (R CE) and the longest electron lifetime (τ eff). Hence, the improved performance of DSSC-1 could be ascribed to the core–shell photoanode with blocking layer, which increased electron transport and suppressed recombination of charge carriers at the photoanode/dye/electrolyte interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.O. Regan and M. Grätzel, Nature 353, 737 (1991).

    Article  Google Scholar 

  2. M. Grätzel, Nature 414, 338 (2001).

    Article  Google Scholar 

  3. B. Tan and Y. Wu, J. Phys. Chem. B 110, 15932 (2006).

    Article  Google Scholar 

  4. M.K. Nazeeruddin, F. de Angelis, and S. Fantacci, et al., J. Am. Chem. Soc. 127, 16835 (2005).

    Article  Google Scholar 

  5. M. Wei, Y. Konishi, H. Zhou, M. Yanagida, H. Sugihara, and H. Arakawa, J. Mater. Chem. 16, 1287 (2006).

    Article  Google Scholar 

  6. J. Nelson, Phys. Rev. B 59, 15374 (1999).

    Article  Google Scholar 

  7. J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.-S. Lim, J.A. Chang, Y.H. Lee, H.-J. Kim, A. Sarkar, Md.K Nazeeruddin, M. Gratzel, and S. Seok II, Nature Photonics 80, 1 (2013). doi:10.1038/NPHOTON.2013.80.

    Google Scholar 

  8. N. Koide, A. Islam, Y. Chiba, and L. Han, J. Photochem. Photobiol. A 182, 296 (2006).

    Article  Google Scholar 

  9. S. Chappel, S.G. Chen, and A. Zaban, Langmuir 18, 3336 (2002).

    Article  Google Scholar 

  10. S.G. Diamant, O. Chen, A. Melamed, and A. Zaban, J. Phys. Chem. B 107, 1977 (2003).

    Article  Google Scholar 

  11. Y. Diamant, S. Chappel, S.G. Chen, O. Melamed, and A. Zaban, Coordination. Chem. Rev. 248, 1271 (2004).

    Google Scholar 

  12. S.G. Chen, S. Chappel, Y. Diamant, and A. Zaban, Chem. Mater. 13, 4629 (2001).

    Article  Google Scholar 

  13. R. Katoh, A. Furube, and T. Yoshihara, et al., J. Phys. Chem. B 108, 4818 (2004).

    Article  Google Scholar 

  14. E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz, and J.R. Durrant, JACS 125, 475 (2003).

    Article  Google Scholar 

  15. Bihui Li, Gang Lü, Lijuan Luo, and Yiwen Tang, J. Nat. Sci. 15, 325 (2010).

    Google Scholar 

  16. P. Basyach and A. Choudhury, Int. J. Innovat. Res. Develop. 1, 175 (2012).

    Google Scholar 

  17. P. Ramasamy, M.-S. Kang, H.-J. Cha, and J. Kim, Mater. Res. Bull. 48, 79 (2012).

    Article  Google Scholar 

  18. K. Hara, Z.-S. Wang, T. Sato, A. Furube, R. Katoh, H. Sugihara, Y. D, C. Kasada, A. Shinpo, and S. Suga, J. Phys. Chem. B 109, 15476 (2005).

    Article  Google Scholar 

  19. Z.S. Wang, Y. Cui, K. Hara, Y. Dan-oh, C. Kasada, and A. Shinpo, Adv. Mater. 19, 1138 (2007).

    Article  Google Scholar 

  20. E. Stathatos and P. Lianos, a. Chem. Mater. 15, 1825 (2003).

    Article  Google Scholar 

  21. W. Kubo, S. Kambe, S. Nakade, T. Kitamura, K. Hanabusa, Y. Wada, and S. Yanagida, J. Phys. Chem. B 107, 4374 (2003).

    Article  Google Scholar 

  22. J.H. Wu, Z. Lan, J.M. Lin, M.L. Huang, S.C. Hao, T. Sato, and S. Yin, Adv. Mater. 19, 4006 (2006).

    Article  Google Scholar 

  23. P. Wang, S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, T. Sekiguchi, and M. Grätzel, Nat. Mater. 2, 402 (2003).

    Article  Google Scholar 

  24. C.H. Lee, S.W. Rhee, and H.W. Choi, Nanoscale Res. Lett. 7, 48 (2012).

    Article  Google Scholar 

  25. X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. LaTempa, and C.A. Grimes, Nano Lett. 8, 3781 (2008).

    Article  Google Scholar 

  26. K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, and H. Arakawa, J. Phys. Chem. B 107, 597 (2003).

    Article  Google Scholar 

  27. K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, and Hideki Sugihara Hironori Arakawa, Sol. Energy Mater. Sol. Cells 77, 89 (2003).

    Article  Google Scholar 

  28. J.Y. Kim, S.W. Lee, J.H. Noh, H.S. Jung, and K.S. Hong, J. Electroceram. 23, 422 (2009).

    Article  Google Scholar 

  29. Q. Zheng, H. Kang, J. Yun, J. Lee, J.H. Park, and S. Baik, ACS Nano 5, 5088 (2011).

    Article  Google Scholar 

  30. G. Schlichthorl, S.Y. Huang, J. Sprague, and A.J. Frank, J. Phys. Chem. B 101, 8141 (1997).

    Article  Google Scholar 

  31. G. Schlichthorl, N.G. Park, and A.J. Frank, J. Phys. Chem. B 103, 782 (1999).

    Article  Google Scholar 

  32. R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, Electrochim. Acta 47, 4213 (2002).

    Article  Google Scholar 

  33. N.G. Park, M.G. Kang, K.M. Kim, K.S. Ryu, S.H. Chang, D.K. Kim, J. van de Lagemaat, K.D. Benkstein, and A.J. Frank, Langmuir 20, 4246 (2004).

    Article  Google Scholar 

  34. J. Bisquert, J. Phys. Chem. B 106, 325 (2002).

    Article  Google Scholar 

  35. M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, and S. Isoda, J. Phys. Chem. B 110, 13872 (2006).

    Article  Google Scholar 

  36. B. Tan and Y. Wu, J. Phys. Chem. B 110, 2087 (2006).

    Article  Google Scholar 

  37. J.J. Wu, G.R. Chen, C.C. Lu, W.T. Wu, and J.S. Chen, Nanotechnology 19, 105702 (2008).

    Article  Google Scholar 

  38. J. Nelson and R.E. Chandler, Coord. Chem. Rev. 248, 1181 (2004).

    Article  Google Scholar 

  39. C.H. Lee, S.W. Rhee, and H.W. Choi, Nanoscale Res. Lett. 7, 48 (2012).

    Article  Google Scholar 

  40. S. Wu, H. Han, Q. Tai, J. Zhang, S. Xu, C. Zhou, Y. Yang, H. Hu, B.L. Chen, B. Sebo, and X.-Z. Zhao, Nanotechnology 19, 215704 (2008).

    Article  Google Scholar 

  41. H.S. Jung, J.K. Lee, M. Nastasi, S.W. Lee, J.Y. Kim, J.S. Park, K.S. Hong, and H. Shin, Langmuir 21, 10332 (2005).

    Article  Google Scholar 

  42. Mariyappan Shanmugam and Mahdi Farrokh, Thin Solid Films 518, 2678 (2010).

    Article  Google Scholar 

  43. J. van de Lagemaat, N.G. Park, and A.J. Frank, J. Phys. Chem. B 104, 2044 (2008).

    Article  Google Scholar 

Download references

Acknowledgement

We thank Bharathiar University, Coimbatore and Annamalai University, Chidambaram, for allowing us to perform this work in their laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Venkatachalam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maheswari, D., Venkatachalam, P. Improved Performance of Dye-Sensitized Solar Cells Fabricated from a Coumarin NKX-2700 Dye-Sensitized TiO2/MgO Core–Shell Photoanode with an HfO2 Blocking Layer and a Quasi-Solid-State Electrolyte. J. Electron. Mater. 44, 967–976 (2015). https://doi.org/10.1007/s11664-014-3595-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3595-2

Keywords

Navigation