Skip to main content
Log in

Preparation and Properties of Zn4Sb2.94In0.06/ZnO Composite Thermoelectric Materials

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Zn4Sb2.94In0.06/x wt.% ZnO (x = 0, 0.5, 1, 2) composite thermoelectric (TE) materials were prepared with ZnO as additive. The materials were characterized by x-ray diffraction analysis, electron probe microanalysis, and use of TE transport measurements. The ZnO additive, distributed throughout the interior of intact part of the bulk material, interacts with diffusing elemental Zn at elevated temperatures, which is beneficial to the thermal stability of the composite TE materials. The electrical conductivity is increased by addition of the ZnO, because of increased carrier mobility, even though the carrier concentration decreases slightly. The Seebeck coefficients are nearly the same for all the composite TE materials below 560 K, and the presence of the decomposition product ZnSb increases the Seebeck coefficient at high temperatures. All the composite TE materials have lower thermal conductivity than pure Zn4Sb2.94In0.06, as a result of the lower lattice thermal conductivity, because of the enhanced phonon scattering induced by the ZnO additive. The maximum ZT is 1.16 at 700 K for the sample with x = 1, an increase of 86% compared with that of pure Zn4Sb2.94In0.06. Therefore, addition of ZnO can increase the thermal stability and TE performance of Zn4Sb3-based composite TE materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.J. Disalvo, Science 285, 703 (1999).

    Article  Google Scholar 

  2. D.M. Rowe, CRC Handbook of Thermoelectrics (Boca Raton: CRC Press, 1995), p. 701.

    Book  Google Scholar 

  3. K. Ahn, M.K. Han, J.Q. He, J. Androulakis, S. Ballikaya, C. Uher, V.P. Dravid, and M.G. Kanatzidis, J. Am. Chem. Soc. 132, 5227 (2010).

    Article  Google Scholar 

  4. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).

    Article  Google Scholar 

  5. M. Orihashi, Y. Noda, L.D. Chen, T. Goto, and T. Hirai, J. Phys. Chem. Solids 61, 919 (2000).

    Article  Google Scholar 

  6. M. Zhou, J.F. Li, and T. Kita, J. Am. Chem. Soc. 130, 4527 (2008).

    Article  Google Scholar 

  7. L. Bjerg, G.K.H. Madsen, and B.B. Iversen, Chem. Mater. 23, 3907 (2011).

    Article  Google Scholar 

  8. B.B. Iversen, J. Mater. Chem. 20, 10778 (2010).

    Article  Google Scholar 

  9. T. Caillat, J.P. Fleurial, and A. Borahchevsky, J. Phys. Chem. Solids 58, 1119 (1997).

    Article  Google Scholar 

  10. J.H. Ahn, M.W. Ohb, B.S. Kim, S.D. Park, B.K. Min, H.W. Lee, and Y.J. Shim, Mater. Res. Bull. 46, 1490 (2011).

    Article  Google Scholar 

  11. T. Itoh, J. Shan, and K. Kitagawa, J. Propul. Power 24, 353 (2008).

    Article  Google Scholar 

  12. G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B.B. Iversen, Nat. Mater. 3, 458 (2004).

    Article  Google Scholar 

  13. R. Carlini, D. Marré, I. Pallecchi, R. Ricciardi, and G. Zanicchi, Intermetallics 45, 60 (2014).

    Article  Google Scholar 

  14. Q.Q. Wang, X.Y. Qin, D. Li, and T.H. Zou, Appl. Phys. Lett. 102, 154101 (2013).

    Article  Google Scholar 

  15. M. Tsutsui, L.T. Zhang, K. Ito, and M. Yamaguchi, Intermetallics 12, 809 (2004).

    Article  Google Scholar 

  16. D.G. Tang, W.Y. Zhao, J. Yu, P. Wei, H.Y. Zhou, W.T. Zhu, and Q.J. Zhang, J. Alloys Compd. 601, 50 (2014).

    Article  Google Scholar 

  17. W. Li, L.M. Zhou, Y.L. Li, J. Jiang, and G.J. Xu, J. Alloys Compd. 486, 335 (2009).

    Article  Google Scholar 

  18. D.G. Tang, W.Y. Zhao, S.D. Cheng, P. Wei, J. Yu, and Q.J. Zhang, J. Solid State Chem. 193, 89 (2012).

    Article  Google Scholar 

  19. T. Dasgupta, C. Stiewe, A. Sesselmann, H. Yin, B.B. Iversen, and E. Mueller, J. Appl. Phys. 113, 103708 (2013).

    Article  Google Scholar 

  20. C. Chubilleau, B. Lenoir, P. Masschelein, A. Dauscher, and C. Godart, J. Electron. Mater. 41, 1181 (2012).

    Article  Google Scholar 

  21. T.M. Tritt, Ann. Rev. Mater. Res. 41, 433 (2011).

    Article  Google Scholar 

  22. J.P. Lin, X.D. Li, G.J. Qiao, Z. Wan, J. Carrete, Y. Ren, L.Z. Ma, Y.J. Fei, B.F. Yang, L. Lei, and J. Li, J. Am. Chem. Soc. 136, 1497 (2014).

    Article  Google Scholar 

  23. D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, and W.C. Harsch, Solid State Commun. 105, 399 (1998).

    Article  Google Scholar 

  24. L.T. Zhang, M. Tsutsui, K. Ito, and M. Yamaguchi, J. Alloys Compd. 358, 252 (2003).

    Article  Google Scholar 

  25. S.I. Johnson, A. Zevalkink, and G.J. Snyder, J. Mater. Chem. A 1, 4244 (2013).

    Article  Google Scholar 

  26. H. Wang, Y.Z. Pei, A.D. LaLonde, and G.J. Snyder, Adv. Mater. 23, 1366 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyu Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11664_2014_3590_MOESM1_ESM.tiff

Fig. S1. XRD patterns of Zn4Sb2.94In0.06/x wt.% ZnO (x = 0.5, 2) composite thermoelectric materials after electrical property measurements. (TIFF 1450 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, D., Zhu, W., Wei, P. et al. Preparation and Properties of Zn4Sb2.94In0.06/ZnO Composite Thermoelectric Materials. J. Electron. Mater. 44, 1902–1908 (2015). https://doi.org/10.1007/s11664-014-3590-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3590-7

Keywords

Navigation