Skip to main content
Log in

Multiscale Design of Nanostructured Thermoelectric Coolers: Effects of Contact Resistances

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Our objective is to develop a multiscale simulator for thermoelectric cooler devices, in which the material parameters are obtained atomistically using a combination of molecular dynamics and tight-binding simulations and then used in the system level design. After benchmarking the simulator against a recent experimental work, we carry out a detailed numerical investigation of the performance of Bi2Te3 nanowire-based thermoelectric devices for hot-spot cooling. The results suggest that active hotspot cooling of as much as 23°C with a high heat flux is achievable using such low-dimensionality structures. However, it has been observed that thermal and electrical contact resistances, which are quite large in nanostructures, play a critical role in determining the cooling range and lead to significant performance degradation that must be addressed before these devices can be deployed in such applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Watwe and R. Viswanath, Proc. of InterPACK 3, 35044 (2003).

    Google Scholar 

  2. R. Mahajan, C. Chiu, and G. Chrysler, Proc. IEEE 94, 1476 (2006).

    Article  Google Scholar 

  3. G.J. Snyder, M. Soto, R. Alley, D. Koester, and B. Conner, hot-spot Cooling using Embedded Thermoelectric Coolers, 22nd IEEE SEMI-THERM Symposium, pp. 135–143 (2006).

  4. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).

    Article  Google Scholar 

  5. G. Snyder, J. Lim, C. Huang, and J. Fleurial, Nat. Mater. 2, 528 (2003).

    Article  Google Scholar 

  6. K. Fukutaniand and A. Shakouri, Proc. InterPACK 2005, 73410 (2005).

    Google Scholar 

  7. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  8. A. Majumdar, Science 303, 777 (2004).

    Article  Google Scholar 

  9. A.I. Boukai, et al., Nature 451, 168 (2007).

    Article  Google Scholar 

  10. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  Google Scholar 

  11. I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, and R. Venkatasubramanian, Nat. Nanotechnol. 4, 235 (2009).

    Article  Google Scholar 

  12. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Springer Series in Materials Science, Vol. 45Thermoelectrics: Basic Principles and New Materials Developments, (Berlin: Springer, 2001).

    Google Scholar 

  13. L.D. Hicks, M. Hirano, and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).

    Article  Google Scholar 

  14. S. Lee and P. von Allmen, Appl. Phys. Lett. 88, 022107 (2006).

    Article  Google Scholar 

  15. S. Ahmed, N. Kharche, R. Rahman, M. Usman, S. Lee, H. Ryu, H. Bae, S. Clark, B. Haley, M. Naumov, F. Saied, M. Korkusinski, R. Kennel, M. Mclennan, T.B. Boykin, and G. Klimeck, Multimillion Atom Simulations with NEMO 3-D.Encyclopedia of Complexity and Systems Science, Vol. 6, ed. R. Meyers (New York: Springer, 2009), p. 5745.

    Chapter  Google Scholar 

  16. T.B. Boykin, G. Klimeck, R.C. Bowen, and F. Oyafuso, Phys. Rev. B 66, 125207 (2002).

    Article  Google Scholar 

  17. N. Neophytou, Quantum and Atomistic Effects in Nanoelectronic Transport Devices, PhD dissertation, Purdue University, 2008.

  18. LAMMPS software is freely available at: http://lammps.sandia.gov/.

  19. B. Huang and M. Kaviany, Phys. Rev. B 77, 125209 (2008).

    Article  Google Scholar 

  20. B. Qiu, L. Sun, and Xiulin Ruan, Phys. Rev. B 83, 035312 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaikh Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharmin, A., Rashid, M., Gaddipati, V. et al. Multiscale Design of Nanostructured Thermoelectric Coolers: Effects of Contact Resistances. J. Electron. Mater. 44, 1697–1703 (2015). https://doi.org/10.1007/s11664-014-3520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3520-8

Keywords

Navigation