Skip to main content
Log in

Growth of InN and In-Rich InGaN Layers on GaN Templates by Pulsed Metalorganic Chemical Vapor Deposition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

InN and In-rich InGaN layers have been grown on GaN templates using the pulsed metalorganic chemical vapor deposition (MOCVD) technique and compared with analogous layers grown by conventional MOCVD. Structural investigations were performed using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Surface morphology was studied using atomic force microscopy. Electrical and optical properties were studied using Hall measurements and photoluminescence (PL) spectroscopy. All layers were free of metal droplets. InN grown using pulsed MOCVD showed fairly low background electron concentration (n e = 8 × 1018 cm−3 to 9 × 1018 cm−3) and high electron mobility (μ e = 644 cm2 V−1 s−1). Structural studies revealed increase of size (from 100 nm to 500 nm) and decrease of density of InN islands at higher growth temperatures. For In-rich InGaN layers (In content 68% and 80%) the density of islands was similar to that in InN, while the diameter varied from 50 nm to 150 nm. Inhomogeneities of In and Ga distribution in the layers resulting in broadened XRD lines and PL bands are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).

    Article  Google Scholar 

  2. J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager, S.X. Li, E.E. Haller, H. Lu, and W.J. Schaff, J. Appl. Phys. 94, 4457 (2003).

    Article  Google Scholar 

  3. J. Wu, J. Appl. Phys. 106, 011101(1) (2009).

    Google Scholar 

  4. R.S.Q. Fareed, R. Jain, R. Gaska, M.S. Shur, J. Wu, W. Walukiewicz, and M.A. Khan, Appl. Phys. Lett. 84, 1892 (2004).

    Article  Google Scholar 

  5. O. Ambacher, M.S. Brandt, R. Dimitrov, T. Metzger, M. Stutzmann, R.A. Fischer, A. Miehr, A. Bergmaier, and G. Dollinger, J. Vac. Sci. Technol. B 14, 3532 (1996).

    Article  Google Scholar 

  6. N. Dietz, M. Strassburg, and V. Woods, J. Vac. Sci. Technol. A 23, 1221 (2005).

    Article  Google Scholar 

  7. N. Dietz, M. Alevli, V. Woods, M. Strassburg, H. Kang, and I.T. Ferguson, Phys. Status Solidi B 242, 2985 (2005).

    Article  Google Scholar 

  8. W. Maleyre, O. Briot, and S. Ruffenach, J. Cryst. Growth 269, 15 (2004).

    Article  Google Scholar 

  9. M. Jamil, R.A. Arif, Y.K. Ee, H. Tong, J.B. Higgins, and N. Tansu, Phys. Status Solidi A 205, 1619 (2008).

    Article  Google Scholar 

  10. M.C. Johnson, S.L. Konsek, A. Zettl, and E.D. Bourret-Courchesne, J. Cryst. Growth 272, 400 (2004).

    Article  Google Scholar 

  11. M. Jamil, H. Zhao, J.B. Higgins, and H. Tansu, Phys. Status Solidi A 205, 2886 (2008).

    Article  Google Scholar 

  12. M. Moseley, B. Gunning, J. Greenlee, J. Lowder, G. Namkoong, and W.A. Doolittle, J. Appl. Phys. 112, 014909(1) (2012).

    Article  Google Scholar 

  13. V. Woods and N. Dietz, Mater. Sci. Eng. B Adv. 127, 239 (2006).

    Article  Google Scholar 

  14. A. Kadir, S. Mukhopadhyay, T. Ganguli, Ch Galande, M.R. Gokhale, B.M. Arora, P. Raychaudhuri, and A. Bhattacharya, Solid State Commun. 146, 361 (2008).

    Article  Google Scholar 

  15. VYu Davydov, A.A. Klochikhin, R.P. Seisyan, V.V. Emtsev, S.V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A.V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Status Solidi B 229, R1 (2002).

    Article  Google Scholar 

  16. B.N. Pantha, J. Li, J.Y. Lin, and H.X. Jiang, Appl. Phys. Lett. 93, 182107(1) (2008).

    Article  Google Scholar 

  17. VYu Davydov, A.A. Klochikhin, V.V. Emtsev, S.V. Ivanov, V.V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A.V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E.E. Haller, Phys. Status Solidi B 230, R4 (2002).

    Article  Google Scholar 

  18. G. Feuillet, B. Daudin, F. Widmann, J.L. Rouviere, and M. Arlery, J. Cryst. Growth 189, 142 (1998).

    Article  Google Scholar 

  19. Y.F. Ng, Y.G. Cao, M.H. Xie, X.L. Wang, and S.Y. Tong, Appl. Phys. Lett. 81, 3960 (2002).

    Article  Google Scholar 

  20. I. Daruka and A.L. Barabasi, Phys. Rev. Lett. 79, 3708 (1997).

    Article  Google Scholar 

  21. H. Wang, D.S. Jiang, J.J. Zhu, D.G. Zhao, Z.S. Liu, Y.T. Wang, S.M. Zhang, and H. Yang, Semicond. Sci. Technol. 24, 055001(1) (2009).

    Google Scholar 

  22. M. Jamil, H. Zhao, J.B. Higgins, and N. Tansu, J. Cryst. Growth 310, 4947 (2008).

    Article  Google Scholar 

  23. C. Yang, X. Wang, H. Xiao, X. Zhang, G. Hu, J. Ran, C. Wang, J. Li, J. Li, and Z. Wang, Appl. Surf. Sci. 255, 3149 (2008).

    Article  Google Scholar 

  24. G.T. Thaler, D.D. Koleske, S.R. Lee, K.H.A. Bogart, and M.H. Crawford, J. Cryst. Growth 312, 1817 (2010).

    Article  Google Scholar 

  25. G. Koblmuller, C.S. Gallinat, and J.S. Speck, J. Appl. Phys. 101, 083516(1) (2007).

    Article  Google Scholar 

  26. G.B. Stringfellow, J. Cryst. Growth 312, 735 (2010).

    Article  Google Scholar 

  27. F.A. Ponce, S. Srinivasan, A. Bell, K. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, Phys. Status Solidi B 240, 273 (2003).

    Article  Google Scholar 

  28. S.Y. Karpov, MRS Internet J. Nitride Semicond. Res. 3, 16 (1998).

    Article  Google Scholar 

  29. J. Neugebauer, Phys. Status Solidi C 6, 1651 (2003).

    Article  Google Scholar 

  30. S. Choi, T.H. Kim, S. Wolter, A. Brown, H.O. Everitt, M. Losurdo, and G. Bruno, Phys. Rev. Lett. B 77, 115435(1) (2008).

    Google Scholar 

  31. H. Chen, R.M. Feenstra, J.E. Northrup, T. Zywietz, and J. Neugebauer, Phys. Rev. Lett. 85, 1902 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by projects NEWLED (EC FP7 #318388) and HEISEC (Nordic Energy Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kadys.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadys, A., Malinauskas, T., Grinys, T. et al. Growth of InN and In-Rich InGaN Layers on GaN Templates by Pulsed Metalorganic Chemical Vapor Deposition. J. Electron. Mater. 44, 188–193 (2015). https://doi.org/10.1007/s11664-014-3494-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3494-6

Keywords

Navigation