Skip to main content
Log in

Thermoelectric and Transport Properties of Yb z Fe4−x Ni x Sb12 Skutterudites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

p-Type Yb z Fe4−x Ni x Sb12 (0.8 ≤ z ≤1.0, and 0.25 ≤ x ≤0.5) skutterudites were prepared, and the effects of Yb filling and Ni substitution on the thermoelectric properties were examined. X-ray diffraction patterns revealed that Yb z Fe4−x Ni x Sb12 skutterudites were synthesized, but small amounts of secondary phases (FeSb2 and Sb) were produced, except for the YbFe3.5Ni0.5Sb12 specimen. This meant that the charge compensation with Ni and the amount of Yb filling should be sufficient to stabilize the skutterudite structure. All specimens had positive Hall coefficients and Seebeck coefficients, and the carrier concentration ranged from 9.80 × 1020 cm−3 to 3.37 × 1021 cm−3. The electrical conductivity decreased and the Seebeck coefficient increased with increasing Yb and Ni contents due to the decreased carrier concentration. The thermal conductivity decreased with increasing Yb and Ni contents, and YbFe3.5Ni0.5Sb12 showed the lowest thermal conductivity. The maximum dimensionless figure of merit achieved was of 0.62 at 723 K for YbFe3.5Ni0.5Sb12, based on the high power factor (2.6 mWm−1 K−2) and the low thermal conductivity (2.9 Wm−1 K−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).

    Article  Google Scholar 

  2. B.C. Sales, D. Mandrus, B.C. Chakoumakos, V. Keppens, and J.R. Thompson, Phys. Rev. B 56, 15081 (1997).

    Article  Google Scholar 

  3. D.T. Morelli, G.P. Meisner, B. Chen, S. Hu, and C. Uher, Phys. Rev. B 56, 7376 (1997).

    Article  Google Scholar 

  4. G.S. Nolas, M. Kaeser, R.T. Littleton IV, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).

    Article  Google Scholar 

  5. J.G.A. Lamberton, S. Bhattacharya, R.T. Littleton IV, M.A. Kaeser, R.H. Tedstrom, T.M. Tritt, J. Yang, and G.S. Nolas, Appl. Phys. Lett. 80, 598 (2002).

    Article  Google Scholar 

  6. V.L. Kuznetsov, L.A. Kuznetsova, and D.M. Rowe, J. Phys.: Condens. Matter 15, 5035 (2003).

    Google Scholar 

  7. L.D. Chen, T. Kawahara, X.F. Tang, T. Goto, T. Hirai, J.S. Dyck, W. Chen, and C. Uher, J. Appl. Phys. 90, 1864 (2001).

    Article  Google Scholar 

  8. M. Puyet, B. Lenoir, A. Dauscher, M. Dehmas, C. Stiewe, and E. Muller, J. Appl. Phys. 95, 4852 (2004).

    Article  Google Scholar 

  9. X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, W.B. Zhang, and Y.Z. Pei, J. Appl. Phys. 99, 053711 (2006).

    Article  Google Scholar 

  10. Y.Z. Pei, L.D. Chen, W. Zhang, X. Shi, S.Q. Bai, X.Y. Zhao, Z.G. Mei, and X.Y. Li, Appl. Phys. Lett. 89, 221107 (2006).

    Article  Google Scholar 

  11. Y.Z. Pei, J. Yang, L.D. Chen, W. Zhang, J.R. Salvador, and J. Yang, Appl. Phys. Lett. 95, 042101 (2009).

    Article  Google Scholar 

  12. T. He, J. Chen, H.D. Rosenfeld, and M.A. Subramanian, Chem. Mater. 18, 759 (2006).

    Article  Google Scholar 

  13. R.C. Mallik, J.Y. Jung, S.C. Ur, and I.H. Kim, Met. Mater. Int. 14, 223 (2008).

    Article  Google Scholar 

  14. A. Harnwunggmoung, K. Kurosaki, H. Muta, and S. Yamanaka, Appl. Phys. Lett. 96, 202107 (2010).

    Article  Google Scholar 

  15. A. Harnwunggmoung, K. Kurosaki, T. Plirdpring, T. Sugahara, Y. Ohishi, H. Muta, and S. Yamanaka, J. Appl. Phys. 110, 013521 (2011).

    Article  Google Scholar 

  16. Y. Qiu, L. Xi, X. Shi, P. Qiu, W. Zhang, L. Chen, J.R. Salvador, J.Y. Cho, J. Yang, Y.C. Chien, S.W. Chen, Y. Tang, and G.J. Snyder, Adv. Funct. Mater. 23, 3194 (2013).

    Article  Google Scholar 

  17. D.J. Singh and W.E. Pickett, Phys. Rev. B 50, 11235 (1994).

    Article  Google Scholar 

  18. X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, J. Am. Chem. Soc. 133, 7837 (2011).

    Article  Google Scholar 

  19. W. Zhao, Q. Zhang, C. Dong, L. Liu, and X. Tang, J. Am. Chem. Soc. 131, 3713 (2009).

    Article  Google Scholar 

  20. J. Graff, S. Zhu, T. Holgate, J. Peng, J. He, and T.M. Tritt, J. Electron. Mater. 40, 5 (2011).

    Article  Google Scholar 

  21. C. Uher, C.P. Li, and S. Ballikaya, J. Electron. Mater. 39, 9 (2010).

    Article  Google Scholar 

  22. M.D. Hornbostel, E.J. Hyer, J.H. Edvalson, and D.C. Johnson, Inorg. Chem. 36, 4270 (1997).

    Article  Google Scholar 

  23. P.F. Qiu, J. Yang, R.H. Liu, X. Shi, X.Y. Huang, G.J. Snyder, W. Zhang, and L.D. Chen, J. Appl. Phys. 109, 063713 (2011).

    Article  Google Scholar 

  24. J. Yang, P. Qiu, R. Liu, Li. Xi, S. Zheng, W. Zhang, L. Chen, D.J. Singh, and J. Yang, Phys. Rev. B 84, 235205 (2011).

  25. A. Möchel, I. Sergueev, N. Nguyen, G.J. Long, F. Grandjean, D.C. Johnson, and R.P. Hermann, Phys. Rev. B 84, 064302 (2011).

    Article  Google Scholar 

  26. N.R. Dilley, E.J. Freeman, E.D. Bauer, and M.B. Maple, Phys. Rev. B 58, 6287 (1998).

    Article  Google Scholar 

  27. W. Schnelle, A.L. Jasper, H. Rosner, R.C. Gil, R. Gumeniuk, D. Trots, J.A. Mydosh, and Y. Grin, Phys. Rev. B 77, 094421 (2008).

    Article  Google Scholar 

  28. W. Schnelle, A.L. Jasper, M. Schmidt, H. Rosner, H. Borrmann, U. Burkhardt, J.A. Mydosh, and Y. Grin, Phys. Rev. B 72, 020402 (2005).

    Article  Google Scholar 

  29. K.H. Park, I.H. Kim, S.M. Choi, W.S. Seo, D.I. Cheong, and H. Kang, J. Electron. Mater. 42, 1377 (2013).

    Article  Google Scholar 

  30. J.Y. Cho, Z. Ye, M.M. Tessema, R.A. Waldo, J.R. Salvador, J. Yang, W. Cai, and H. Wang, Acta Mater. 60, 2104 (2012).

    Article  Google Scholar 

  31. R. Liu, J.Y. Cho, J. Yang, W. Zhang, and L. Chen, J. Mater. Sci. Technol. (2014, in press), http://dx.doi.org/10.1016/ j.jmst.2014.05.007.

  32. G. Nie, T. Ochi, S. Suzuki, M. Kikuchi, S. Ito, and J. Guo, J. Electron. Mater. (published online: 7 November 2013).

  33. Y.C. Lan, A.J. Minnich, G. Chen, and Z.F. Ren, Adv. Funct. Mater. 20, 357 (2010).

    Article  Google Scholar 

  34. J.Y. Cho, Z. Ye, M.M. Tessema, J.R. Salvador, R.A. Waldo, J. Yang, W. Zhang, J. Yang, W. Cai, and H. Wang, J. Appl. Phys. 113, 143708 (2013).

    Article  Google Scholar 

  35. C. Kittel, Introduction to Solid State Physics, 6th ed. (New York: Wiley, 1986), p. 152.

    Google Scholar 

  36. C. Zhou, D. Morelli, X. Zhou, G. Wang, and C. Uher, Intermetallics 19, 1390 (2011).

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by the Regional Innovation Center (RIC) Program funded by the Ministry of Trade, Industry and Energy, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, WM., Shin, DK. & Kim, IH. Thermoelectric and Transport Properties of Yb z Fe4−x Ni x Sb12 Skutterudites. J. Electron. Mater. 44, 1432–1437 (2015). https://doi.org/10.1007/s11664-014-3401-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3401-1

Keywords

Navigation