Skip to main content
Log in

Lattice Thermal Conductivity Reduction Due to In Situ-Generated Nano-Phase in Bi0.4Sb1.6Te3 Alloys by Microwave-Activated Hot Pressing

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The p-type Bi0.4Sb1.6Te3 alloys are prepared using a new method of mechanical alloying followed by microwave-activated hot pressing (MAHP). The effect of sintering temperature on the microstructure and thermoelectric properties of Bi0.4Sb1.6Te3 alloys is investigated. Compared with other sintering techniques, the MAHP process can be used to produce relatively compact bulk materials at lower sintering temperatures owing to its unique sintering mechanism. The grain size of the MAHP specimens increases gradually with the sintering temperature and a partially oriented lamellar structure can be formed in some regions of specimens obtained. The formation of the in situ-generated nano-phase is induced by the arcing effect of the MAHP process, which enhances the phonon scattering effect and decreases the lattice thermal conductivity. A minimum lattice thermal conductivity of 0.41 W/(m·K) and a maximum figure of merit value of 1.04 are obtained at 100°C for the MAHP specimen sintered at 325°C. This technique may also be extended to other functional materials to obtain ultrafine microstructures at low sintering temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  Google Scholar 

  2. D.M. Rowe, eds., CRC Handbook of Thermoelectrics (Boca Raton, FL: CRC, 2006).

    Google Scholar 

  3. J.J. Shen, Z.Z. Yin, S.H. Yang, C. Yu, T.J. Zhu, and X.B. Zhao, J. Electron. Mater. 40, 1095 (2011).

    Article  Google Scholar 

  4. D. Teweldebrhan, V. Goyal, and A.A. Balandin, Nano Lett. 10, 1209 (2010).

    Article  Google Scholar 

  5. A. Boulouz, A. Giani, F. Pascal-Delannoy, M. Boulouz, A. Foucaran, and A. Boyer, J. Cryst. Growth 194, 336 (1998).

    Article  Google Scholar 

  6. J. Kuleshova, E. Koukharenko, X. Li, N. Frety, I.S. Nandhakumar, J. Tudor, S.P. Beeby, and N.M. White, Langmuir 26, 16980 (2010).

    Article  Google Scholar 

  7. M.K. Keshavarz, D. Vasilevskiy, R.A. Masut, and S. Turenne, J. Electron. Mater. 42, 1429 (2013).

    Article  Google Scholar 

  8. P. Bergvall and O. Beckman, Solid-State Electron. 6, 133 (1963).

    Article  Google Scholar 

  9. W. Xie, X. Tang, Y. Yan, Q. Zhang, and T.M. Tritt, Appl. Phys. Lett. 94, 102111 (2009).

    Article  Google Scholar 

  10. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Science 320, 634 (2008).

    Article  Google Scholar 

  11. X.A. Fan, J.Y. Yang, R.G. Chen, W. Zhu, and S.Q. Bao, Mater. Sci. Eng. A 438, 190 (2006).

    Article  Google Scholar 

  12. J.Y. Yang, X.A. Fan, R.G. Chen, W. Zhu, S.Q. Bao, and X.K. Duan, J. Alloys Compd. 416, 270 (2006).

    Article  Google Scholar 

  13. X.A. Fan, J.Y. Yang, R.G. Chen, H.S. Yun, W. Zhu, S.Q. Bao, and X.K. Duan, J. Phys. D 39, 740 (2006).

    Article  Google Scholar 

  14. X.A. Fan, J.Y. Yang, W. Zhu, S.Q. Bao, X.K. Duan, C.J. Xiao, and K. Li, J. Alloys Compd. 461, 9 (2008).

    Article  Google Scholar 

  15. X.A. Fan, J.Y. Yang, W. Zhu, S.Q. Bao, X.K. Duan, C.J. Xiao, and K. Li, J. Phys. D 40, 5727 (2007).

    Article  Google Scholar 

  16. X.A. Fan, J.Y. Yang, W. Zhu, S.Q. Bao, X.K. Duan, and Q.Q. Zhang, J. Alloys Compd. 448, 308 (2008).

    Article  Google Scholar 

  17. D.B. Hyun, T.S. Oh, J.S. Hwang, J.D. Shim, and N.V. Kolomoets, Scr. Mater. 40, 49 (1999).

    Article  Google Scholar 

  18. M. Oghbaei and O. Mirzaee, J. Alloys Compd. 494, 175 (2010).

    Article  Google Scholar 

  19. R. Wroe and A.T. Rowley, J. Mater. Sci. 31, 2019 (1996).

    Article  Google Scholar 

  20. J. Wang, J. Binner, B. Vaidhyanathan, N. Joomun, J. Kilner, G. Dimitrakis, and T.E. Cross, J. Am. Ceram. Soc. 89, 1977 (2006).

    Article  Google Scholar 

  21. O. Kim-Hak, M. Soulier, P.D. Szkutnik, S. Sauier, J. Simon, and D. Goeuriot, Powder Technol. 226, 231 (2012).

    Article  Google Scholar 

  22. G. Delaizir, G. Bernard-Granger, J. Monnier, R. Grodzki, O. Kim-Hak, P.D. Szkutnik, M. Soulier, S. Sauier, D. Goeuriot, O. Rouleau, J. Simon, C. Godart, and C. Navone, Mater. Res. Bull. 47, 1954 (2012).

    Article  Google Scholar 

  23. X. Tang, W. Xie, H. Li, W. Zhao, and Q. Zhang, Appl. Phys. Lett. 90, 012102 (2007).

    Article  Google Scholar 

  24. X. Liu, D.J. Smith, J. Fan, Y.H. Zhang, H. Cao, Y.P. Chen, J. Leiner, B.J. Kirby, M. Dobrowolska, and J.K. Furdyna, Appl. Phys. Lett. 99, 171903 (2011).

    Article  Google Scholar 

  25. E. Pert, Y. Carmel, A. Birnboim, T. Olorunyolemi, D. Gershon, J. Calame, I.K. Lloyd, and O.C. Wilson, J. Am. Ceram. Soc. 84, 1981 (2001).

    Article  Google Scholar 

  26. C. Leonelli, P. Veronesi, L. Denti, A. Gatto, and L. Luliano, J. Mater. Process. Technol. 205, 489 (2008).

    Article  Google Scholar 

  27. Q. Zhang, Q. Zhang, S. Chen, W. Liu, K. Lukas, X. Yan, H. Wang, D. Wang, C. Opeil, G. Chen, and Z.F. Ren, Nano Energy 1, 183 (2012).

    Article  Google Scholar 

  28. J. Martin, L. Wang, L. Chen, and G.S. Nolas, Phys. Rev. B 79, 115311 (2009).

    Article  Google Scholar 

  29. M. Scheele, A.M. Kreuziger, A. Kornowski, C. Klinke, H. Weller, N. Oeschler, and I. Veremchuk, ACS Nano 4, 4283 (2010).

    Article  Google Scholar 

  30. A. Soni, Z. Yanyuan, Y. Ligen, M.K.K. Alk, M.S. Dresselhaus, and Q. Xiong, Nano Lett. 12, 1203 (2012).

    Article  Google Scholar 

  31. J. Chen, T. Sum, D.H. Sim, H. Peng, H. Wang, S. Fan, H.H. Hng, J. Ma, F.Y.C. Boey, S. Li, M.K. Samani, G.C.K. Chen, X. Chen, T. Wu, and Q. Yan, Chem. Mater. 22, 3086 (2010).

    Article  Google Scholar 

  32. D.M. Rowe, V.S. Shukla, and N. Savvides, Nature 290, 765 (1981).

    Article  Google Scholar 

  33. B.C. Sales, B.C. Chakoumakos, D. Mandrus, and J.W. Sharp, J. Solid State Chem. 146, 528 (1999).

    Article  Google Scholar 

  34. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).

    Article  Google Scholar 

Download references

Acknowledgement

We acknowledge the support of the National Natural Science Foundation of China (Grant No. 11074195). We thank Professor Z. D. Xiang for improving the English writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi An Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Fan, X.A., Rong, Z.Z. et al. Lattice Thermal Conductivity Reduction Due to In Situ-Generated Nano-Phase in Bi0.4Sb1.6Te3 Alloys by Microwave-Activated Hot Pressing. J. Electron. Mater. 43, 4327–4334 (2014). https://doi.org/10.1007/s11664-014-3339-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3339-3

Keywords

Navigation