Skip to main content
Log in

Synthesis of Size-Controlled SrFe12O19 Using Modified Spray Pyrolysis–Calcination Method and Their Magnetic Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Strontium hexaferrite (SrFe12O19, SrM) suitable for high-performance permanent magnet applications was synthesized by salt-assisted ultrasonic spray pyrolysis (SA-USP) and subsequent calcination. To control the particle size, the intermediate phase of SrM was collected by SA-USP and various sizes of SrM were obtained by calcining the as-prepared sample at temperatures ranging from 800°C to 1050°C. The synthesized SrM was magnetically aligned by using an external magnetic field to improve remanence. The synthesized particles were of nano- to submicron scale and nonagglomerated. The magnetic properties and squareness of the material depended on the particle size and distribution. Additionally, the NaCl added during synthesis facilitated the formation of nonagglomerated particles, while enhancing and controlling particle growth. The optimum magnetic properties were achieved at calcination temperature of 1000°C, resulting in coercivity of 5646 Oe, saturation magnetization of 73.3 emu/g, and remanence of 59.1 emu/g (80.6% of M s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.C. Pullar, Prog. Mater. Sci. 57, 1191 (2012).

    Article  Google Scholar 

  2. K.S. Martirosyan, C. Dannangoda, E. Galstyan, and D. Litvinov, J. Appl. Phys. 111, 094311 (2012).

    Article  Google Scholar 

  3. S.E. Jacobo, C. Herme, and P.G. Bercoff, J. Alloys Compd. 495, 513 (2010).

    Article  Google Scholar 

  4. J.S. Jiang, J.E. Pearson, Z.Y. Liu, B. Kabius, S. Trasobares, D.J. Miller, S.D. Bader, D.R. Lee, D. Haskel, G. Srajer, and J.P. Liu, Appl. Phys. Lett. 85, 5293 (2004).

    Article  Google Scholar 

  5. J.M.D. Coey, Scr. Mater. 67, 524 (2012).

    Article  Google Scholar 

  6. P. Tenaud, A. Morel, F. Kools, J.M. Le Breton, and L. Lechevallier, J. Alloys Compd. 370, 331 (2004).

    Article  Google Scholar 

  7. A. Goldman, Modern Ferrite Technology (New York: Springer, 2006), p. 227.

    Google Scholar 

  8. M. Cernea, S.-G. Sandu, C. Galassi, R. Radu, and V. Kuncser, J. Alloys Compd. 561, 121 (2013).

    Article  Google Scholar 

  9. D. Chen, Y. Liu, Y. Li, K. Yang, and H. Zhang, J. Magn. Magn. Mater. 337–338, 65 (2013).

    Article  Google Scholar 

  10. P.E. Kazin, L.A. Trusov, D.D. Zaitsev, Y.D. Tretyakov, and M. Jansen, J. Magn. Magn. Mater. 320, 1068 (2008).

    Article  Google Scholar 

  11. B.K. Rai, S.R. Mishra, V.V. Nguyen, and J.P. Liu, J. Alloys Compd. 550, 198 (2013).

    Article  Google Scholar 

  12. T. Kikuchi, T. Nakamura, T. Yamasaki, M. Nakanishi, T. Fujii, J. Takada, and Y. Ikeda, J. Magn. Magn. Mater. 322, 2381 (2010).

    Article  Google Scholar 

  13. S. Ounnunkad, Solid State Commun. 138, 472 (2006).

    Article  Google Scholar 

  14. F.J. Berry, J.F. Marco, C.B. Ponton, and K.R. Whittle, J.␣Mater. Sci. Lett. 20, 431 (2001).

    Article  Google Scholar 

  15. A. Drmota, M. Drofenik, and A. Žnidaršič, Ceram. Int. 38, 973 (2012).

    Article  Google Scholar 

  16. E. Kiani, A.H. Rozatian, and M. Yousefi, J. Mater. Sci. Mater. Electron. 24, 2485 (2013).

  17. L. Junliang, Z. Yanwei, G. Cuijing, Z. Wei, and Y. Xiaowei, J. Eur. Ceram. Soc. 30, 993 (2010).

    Article  Google Scholar 

  18. P. Xu, X. Han, and M. Wang, J. Phys. Chem. C 111, 5866 (2007).

    Article  Google Scholar 

  19. M. Radwan, M.M. Rashad, and M.M. Hessien, J. Mater. Process. Technol. 181, 106 (2007).

    Article  Google Scholar 

  20. D. Lisjak and M. Drofenik, J. Eur. Ceram. Soc. 26, 3681 (2006).

    Article  Google Scholar 

  21. Ashima, S. Sanghi, and Reetu, J. Alloys Compd. 513, 436 (2012).

    Article  Google Scholar 

  22. D.H. Han, J.P. Wang, and H.L. Luo, J. Magn. Magn. Mater. 136, 176 (1994).

    Article  Google Scholar 

  23. S.V. Ketov, Y.D. Yagodkin, and V.P. Menushenkov, J. Alloys Compd. 509, 1065 (2011).

    Article  Google Scholar 

  24. I. Nedkov, A. Petkov, and V. Cheparin, J. Magn. Magn. Mater. 83, 430 (1990).

    Article  Google Scholar 

  25. J. Dufour, E. López-Vidriero, C. Negro, R. Latorre, E.M. AlcalÁ, F. López-Mateos, and A. Formoso, Chem. Eng. Commun. 167, 227 (1998).

    Article  Google Scholar 

  26. H.M. Lee, S.-Y. Bae, J.-H. Yu, and Y.-J. Kim, J. Am. Ceram. Soc. 91, 2856 (2008).

    Article  Google Scholar 

  27. M.H. Kim, D.S. Jung, Y.C. Kang, and J.H. Choi, Ceram. Int. 35, 1933 (2009).

    Article  Google Scholar 

  28. S. Dursun, R. Topkaya, N. Akdoğan, and S. Alkoy, Ceram. Int. 38, 3801 (2012).

    Article  Google Scholar 

  29. R.H. Arendt, J. Solid State Chem. 8, 339 (1973).

    Article  Google Scholar 

  30. B. Xia, I.W. Lenggoro, and K. Okuyama, Adv. Mater. 13, 1579 (2001).

    Article  Google Scholar 

  31. G.-H. An, T.-Y. Hwang, J. Kim, J. Kim, N. Kang, S. Kim, Y.-M. Choi, and Y.-H. Choa, J. Alloys Compd. 583, 145 (2014).

    Article  Google Scholar 

  32. C. Wang, L. Li, J. Zhou, X. Qi, Z. Yue, and X. Wang, J. Magn. Magn. Mater. 257, 100 (2003).

    Article  Google Scholar 

  33. X. Liu, P. Hernández-Gómez, K. Huang, S. Zhou, Y. Wang, X. Cai, H. Sun, and B. Ma, J. Magn. Magn. Mater. 305, 524 (2006).

    Article  Google Scholar 

  34. Z.F. Zi, Y.P. Sun, X.B. Zhu, Z.R. Yang, J.M. Dai, and W.H. Song, J. Magn. Magn. Mater. 320, 2746 (2008).

    Article  Google Scholar 

  35. G. Cao, Nanostructures and Nanomaterials, (Imperial College Press, 2004).

  36. M.M. Hessien, M.M. Rashad, and K. El-Barawy, J. Magn. Magn. Mater. 320, 336 (2008).

    Article  Google Scholar 

  37. B.D. Cullity and C.D. Graham, Introduction to Magnetic Materials, (Piscataway, NJ: Wiley, 2009).

  38. Z.-B. Guo, W.-P. Ding, W. Zhong, J.-R. Zhang, and Y.-W. Du, J. Magn. Magn. Mater. 175, 333 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge a National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2008-0061891) and support from the Pioneer Research Center Program through the National Research Foundation of Korea (NRF-2012-0001262) funded by the Ministry of Science, ICT, and Future Planning.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Ho Choa or Kyoosik Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, GH., Hwang, TY., Choa, YH. et al. Synthesis of Size-Controlled SrFe12O19 Using Modified Spray Pyrolysis–Calcination Method and Their Magnetic Properties. J. Electron. Mater. 43, 3574–3581 (2014). https://doi.org/10.1007/s11664-014-3228-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3228-9

Keywords

Navigation